ja.wikipedia.org

平方数 - Wikipedia

出典: フリー百科事典『ウィキペディア(Wikipedia)』

平方数へいほうすう、(: square number)とは、整数自乗(二乗)で表される数である。平方数は図形数の特に多角数の一種であり、正方形をなすように等間隔に点を配列した際の点の個数に対応している。 四角数しかくすう正方形数せいほうけいすうとも呼ばれる。

平方数の概念は有理数など整数以外の数に一般化できる(#一般化を参照)。

整数は無数に存在するため、平方数もまた無数に存在する。平方数の最初の数個は以下の通り(オンライン整数列大辞典の数列 A290):

0, 1, 4, 9, 16, 25, 36, 49, 64, 81,
100, 121, 144, 169, 196, 225, 256, 289, 324, 361,
400, 441, 484, 529, 576, 625, 676, 729, 784, 841, …
  • ハーシャッド数である平方数は 1, 4, 9, 36, 81, 100, 144, 225, 324, 400, 441, 576, …オンライン整数列大辞典の数列 A118547
  • 十の位が奇数の平方数は、一の位が必ず 6 になる。16, 36, 196, 256, 576, 676 など。
  • 下2桁が 25 の平方数は、百の位が必ず 0, 2, 6 のいずれかになる。25, 225, 625, 1225, …
  • 14444116919696125662510242401 のように、数字を並べ替えただけで、別の平方数になるものがある。(オンライン整数列大辞典の数列 A034289
  • 十進法において、平方数の数字根1, 4, 7, 9 のどれかにしかならない
    • これにより、三進法では三の位が 0 の場合は一の位は 0 または 1 であり、三の位が 1, 2 の場合は一の位が 1 としかならない
  • 十進法において、平方数の下二桁は 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96 の22通りのうちどれかにしかならない
    • これにより、5 で割った余りも 0, 1, 4 のどれかにしかならないし 10 で割った余りも 0, 1, 4, 5, 6, 9 のどれかにしかならない
  • 平方数を二進法表示したとき、二の位は必ず 0 となる(二進法では下2桁は 00, 01, 10, 11 の4通りであり、それぞれ平方すると 002 = 00, 012 = 01, 102 = 100, 112 = 1001 と二の位がいずれも 0 であるため)

有理数の平方として表される有理数を平方数ということもある。さらに一般には、可換体 K の乗法群 K* の部分集合 {x2 | xK} 直積集合と紛れるおそれのないときにはこれを (K*)2 などと表す)の元を平方数や平方元と呼ぶことがある。主に (K*)2K* のときに意味を持つ。

  • Chen, Jing-run (1975). “On the distribution of almost primes in an interval”. Scientia Sinica 18: 611–627. ISSN 0250-7870. Zbl 0381.10033.