link.springer.com

Biosynthesis and biotechnological production of serotonin derivatives - Applied Microbiology and Biotechnology

  • ️Back, Kyoungwhan
  • ️Fri May 01 2009
  • Choi SW, Park RW, Lee WJ (2002) Novel use of polyphenol compounds isolated from safflower (Carthamus tincorious L.) seeds. Korea patent 10-0354791-0000

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19:9–20

    CAS  PubMed  Google Scholar 

  • Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80:577–589

    CAS  Google Scholar 

  • Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424

    CAS  PubMed  Google Scholar 

  • Guillet G, De Luca V (2005) Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiol 137:692–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Facchini PJ (2005) Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta 221:904–914

    CAS  PubMed  Google Scholar 

  • Hotta Y, Nagatsu A, Liu W, Muto T, Narumiya C, Lu X, Yajima M, Ishikawa N, Miyazeki K, Kawai N, Mizukami H, Sakakibara J (2002) Protective effects of antioxidative serotonin derivatives isolated from safflower against postischemic myocardial dysfunction. Mol Cell Biochem 238:151–162

    CAS  PubMed  Google Scholar 

  • Ishihara A, Kawata N, Matsukawa T, Iwamura H (2000) Induction of N-hydroxycinnamoyltyramine synthesis and tyramine N-hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves. Biosci Biotechnol Biochem 64:1025–1031

    CAS  PubMed  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    CAS  PubMed  Google Scholar 

  • Jang SM, Ishihara A, Back K (2004) Production of coumaroylserotonin and feruloylserotonin in transgenic rice expressing pepper hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl) transferase. Plant Physiol 135:346–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenett-Siems K, Weigl R, Kaloga M, Schulz J, Eich E (2003) Ipobscurines C and D: macrolactam-type indole alkaloids from the seeds of Ipomoea obscura. Phytochemistry 62:1257–1263

    CAS  PubMed  Google Scholar 

  • Kang S, Back K (2006) Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers. Sci Hortic 108:337–341

    CAS  Google Scholar 

  • Kang K, Back K (2009) Production of phenylpropanoid amides in recombinant Escherichia coli. Metab Eng 11:64–68

    CAS  PubMed  Google Scholar 

  • Kang K, Jang SM, Kang S, Back K (2005) Enhanced neutraceutical serotonin derivatives of rice seed by hydroxycinnamoyl-CoA:serotonin N-(hydroxycinnamoyl) transferase. Plant Sci 168:783–788

    CAS  Google Scholar 

  • Kang S, Kang K, Chung GC, Choi D, Ishihara A, Lee DS, Back K (2006) Functional analysis of the amine substrate specificity domain of pepper tyramine and serotonin N-hydroxycinnamoyltransferases. Plant Physiol 140:704–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007a) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    CAS  PubMed  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007b) Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep 26:2009–2015

    CAS  PubMed  Google Scholar 

  • Kang K, Lee K, Sohn SO, Park S, Lee S, Kim SY, Kim YS, Back K (2009) Ectopic expression of serotonin N-hydroxycinnamoyltransferase and different production of phenylpropanoid amides in transgenic tomato tissues. Sci Hortic doi: 1016/j.scienta.2008.12.015

  • Koyama N, Kuribayashi K, Seki T, Kobayashi K, Furuhata Y, Suzuki K, Arisaka H, Nakano T, Amino Y, Ishii K (2006) Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem 54:4970–4976

    CAS  PubMed  Google Scholar 

  • Koyama N, Kuribayashi K, Ishii K, Kobayashi K (2009) Composition for preventing atherosclerosis. US patent 07,485,328

  • Kumarasamy Y, Middleton M, Reid RG, Nahar L, Sarker SD (2003) Biological activity of serotonin conjugates from the seeds of Centaurea nigra. Fitoterapia 74:609–612

    CAS  PubMed  Google Scholar 

  • Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER (2004) Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol Lett 26:1125–130

    CAS  PubMed  Google Scholar 

  • Lee K, Kang K, Park M, Woo YM, Back K (2008) Endosperm-specific expression of serotonin N-hydroxycinnamoyltransferase in rice. Plant Foods Hum Nutr 63:53–57

    CAS  PubMed  Google Scholar 

  • Ly D, Kang K, Choi JY, Ishihara A, Back K, Lee SG (2008) HPLC analysis of serotonin, tryptamine, tyramine, and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. J Med Food 11:385–389

    CAS  PubMed  Google Scholar 

  • Martin-Tanguy J (1985) The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul 3:381–399

    CAS  Google Scholar 

  • Mijts BN, Schmidt-Dannert C (2003) Engineering of secondary metabolite pathways. Curr Opin Biotechnol 14:597–602

    CAS  PubMed  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    CAS  PubMed  Google Scholar 

  • Nagatsu A, Zhang HL, Mizukami H, Okuyama H, Sakakibara J, Tokuda H, Nishino H (2000) Tyrosinase inhibitory and anti-tumor promoting activities of compounds isolated from safflower (Carthamus tinctorius L.) and cotton (Gossypium hirsutum L.) oil cakes. Nat Prod Lett 14:153–158

    CAS  Google Scholar 

  • Niwa T, Etoh H, Shimizu A, Shimizu Y (2000) Cis-N-(p-coumaroyl) serotonin from konnyaku, Amorphophallus konjac K. Koch. Biosci Biotechnol Biochem 64:2269–2271

    CAS  PubMed  Google Scholar 

  • Noé W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    PubMed  Google Scholar 

  • Park JB (2008) Serotomide and safflomide modulate forskolin-stimulated cAMP formation via 5-HT1 receptor. Phytomedicine 15:1093–1098

    CAS  PubMed  Google Scholar 

  • Park JB, Schoene N (2002) Synthesis and characterization of N-coumaroyltyramine as a potent phytochemical which arrests human transformed cells via inhibiting protein tyrosine kinases. Biochem Biophys Res Commun 292:1104–1110

    CAS  PubMed  Google Scholar 

  • Park M, Kang K, Park S, Back K (2008a) Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants, Escherichia coli, and yeast. Biosci Biotechnol Biochem 72:2456–2458

    CAS  PubMed  Google Scholar 

  • Park M, Kang K, Park S, Kim YS, Ha SH, Lee SW, Ahn MJ, Bae JM, Back K (2008b) Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Appl Microbiol Biotechnol 81:43–49

    CAS  PubMed  Google Scholar 

  • Pavlík M, Laudová V, Grüner K, Vokáč K, Harmatha J (2002) High-performance liquid chromatographic analysis and separation of N-feruloylserotonin isomers. J Chromatogr 770:291–295

    Google Scholar 

  • RadWanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roh JS, Han JY, Kim JH, Hwang JK (2004) Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull 27:1976–1978

    CAS  PubMed  Google Scholar 

  • Ryan MD, King AMQ, Thomas GP (1991) Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 72:2727–2732

    CAS  PubMed  Google Scholar 

  • Sakamura S, Terayama Y, Kawakatsu S, Ichihara A, Saito H (1978) Conjugated serotonins related to cathartic activity in safflower seed (Carthamus tinctorius L.). Agric Biol Chem 42:1805–1806

    CAS  Google Scholar 

  • Sarker SD, Laird A, Nahar L, Kumarasamy Y, Jaspars M (2001) Indole alkaloids from the seeds of Centaurea cyanus (Asteraceae). Phytochemistry 57:1273–1276

    CAS  PubMed  Google Scholar 

  • Schröder P, Abele C, Gohr P, Stuhlfauth-Roisch U, Grosse W (1999) Latest on the enzymology of serotonin biosynthesis in walnut seeds. Adv Exp Med Biol 467:637–644

    PubMed  Google Scholar 

  • Shoeb M, MacManus S, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lin P, Sarker SD (2006) Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the CaCo2 colon cancer cells. Tetrahedron 62:11172–11177

    CAS  Google Scholar 

  • Takii T, Hayashi M, Hiroma H, Chiba T, Kawashima S, Zhang HL, Nagatsu A, Sakakibara J, Onozaki K (1999) Serotonin derivative, N-(p-coumaroyl) serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF). J Biochem 125:910–915

    CAS  PubMed  Google Scholar 

  • Takii T, Kawashima S, Chiba T, Hayashi H, Hayashi M, Hiroma H, Kimura H, Inukai Y, Shibata Y, Nagatsu A, Sakakibara J, Oomoto Y, Hirose K, Onozaki K (2003) Multiple mechanisms involved in the inhibition of proinflammatory cytokine production from human monocytes by N-(p-coumaroyl) serotonin and its derivatives. Immunopharmacology 3:273–277

    CAS  Google Scholar 

  • Tanaka E, Tanaka C, Mori N, Kuwahara Y, Tsuda M (2003) Phenylpropanoid amides of serotonin accumulate in witchs’ broom diseased bamboo. Phytochemistry 64:965–969

    CAS  PubMed  Google Scholar 

  • Tozawa Y, Hasegawa H, Teruhiko T, Wakasa K (2001) Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant OASA1. Plant Physiol 126:1493–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505

    CAS  PubMed  Google Scholar 

  • Wink M (1997) Special nitrogen metabolism. In: Dey PM, Harborne JB (eds) Plant Biochemistry. Academic, San Diego, pp 439–486

    Google Scholar 

  • Yamamotová A, Pometlova M, Harmatha J, Raskova H, Rokyta R (2007) The selective effect of N-feruloylserotonins isolated from Leuzea carthamoides on nociception and anxiety in rats. J Ethnopharm 112:368–374

    Google Scholar 

  • Yuji N, Naoto K, Katsuya S, Hideaki K, Yuka I (2007) Anti-inflammatory composition. PCT patent 2007129743

  • Zhang HL, Nagatsu A, Sakakibara J (1996) Novel antioxidants from safflower (Carthamus tinctorius L.) oil cake. Chem Pharm Bull 44:874–876

    CAS  Google Scholar