link.springer.com

Myrrh exerts barrier-stabilising and -protective effects in HT-29/B6 and Caco-2 intestinal epithelial cells - International Journal of Colorectal Disease

  • ️Schulzke, Jörg-Dieter
  • ️Thu Dec 15 2016
  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  CAS  PubMed  Google Scholar 

  • Furuse M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Ikenouchi J et al (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171(6):939–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günzel D, Fromm M (2012) Claudins and other tight junction proteins. Compr Physiol 2(3):1819–1852

    PubMed  Google Scholar 

  • Martin-Padura I et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142(1):117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeissig S et al (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Heller F et al (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2):550–564

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Miwa H, Joh T (2008) Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol 23(Suppl 2):S146–S150

    Article  CAS  PubMed  Google Scholar 

  • Luettig J et al (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 3(1–2):e977176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amasheh M et al (2008) Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J Nutr 138(6):1067–1073

    CAS  PubMed  Google Scholar 

  • Suzuki T, Hara H (2009) Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr 139(5):965–974

    Article  CAS  PubMed  Google Scholar 

  • Amasheh M et al (2010) TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci 123:4145–4155

    Article  CAS  PubMed  Google Scholar 

  • Luettig J, et al. (2016) The ginger component 6-shogaol prevents TNF-alpha-induced barrier loss via inhibition of PI3K/Akt and NF-kappaB signaling. Mol Nutr Food Res

  • Shen T et al (2012) The genus Commiphora: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 142(2):319–330

    Article  CAS  PubMed  Google Scholar 

  • Ford RA, Api AM, Letizia CS (1992) Monographs on fragrance raw materials. Food Chem Toxicol 30 Suppl:1S–138S

    CAS  PubMed  Google Scholar 

  • Cheon JH et al (2006) Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis 12(12):1152–1161

    Article  PubMed  Google Scholar 

  • Mencarelli A et al (2009) The plant sterol guggulsterone attenuates inflammation and immune dysfunction in murine models of inflammatory bowel disease. Biochem Pharmacol 78(9):1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Manjula N et al (2006) Inhibition of MAP kinases by crude extract and pure compound isolated from Commiphora mukul leads to down regulation of TNF-alpha, IL-1beta and IL-2. Int Immunopharmacol 6(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Langhorst J et al (2013) Randomised clinical trial: a herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis—a double-blind, double-dummy study. Aliment Pharmacol Ther 38(5):490–500

    Article  CAS  PubMed  Google Scholar 

  • Langhorst J et al (2014) Distinct kinetics in the frequency of peripheral CD4+ T cells in patients with ulcerative colitis experiencing a flare during treatment with mesalazine or with a herbal preparation of myrrh, chamomile, and coffee charcoal. PLoS One 9(8):e104257

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz H et al (1999) Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci 112:137–146

    CAS  PubMed  Google Scholar 

  • Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    Article  CAS  PubMed  Google Scholar 

  • Günzel D et al (2009) Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 122(Pt 10):1507–1517

    Article  PubMed  Google Scholar 

  • Rosenthal R et al (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123(11):1913–1921

    Article  CAS  PubMed  Google Scholar 

  • Rosen MJ et al (2011) STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 17(11):2224–2234

    Article  PubMed  PubMed Central  Google Scholar 

  • Amasheh S et al (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  CAS  PubMed  Google Scholar 

  • Furuse M et al (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153(2):263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thongon N, Krishnamra N (2012) Apical acidity decreases inhibitory effect of omeprazole on Mg(2+) absorption and claudin-7 and -12 expression in Caco-2 monolayers. Exp Mol Med 44(11):684–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreusel KM et al (1991) Cl secretion in epithelial monolayers of mucus-forming human colon cells (HT-29/B6). Am J Phys 261(4):574–582

    Google Scholar 

  • Cui W et al (2010) Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells. Braz J Med Biol Res 43(4):330–337

    Article  CAS  PubMed  Google Scholar 

  • Gitter AH et al (2000) Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Ann N Y Acad Sci 915:193–203

    Article  CAS  PubMed  Google Scholar 

  • Mankertz J et al (2009) TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res 336(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Epple HJ et al (2009) Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 58(2):220–227

    Article  CAS  PubMed  Google Scholar 

  • Schumann M, et al. (2011) Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut

  • Prasad S et al (2005) Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Investig 85(9):1139–1162

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286(36):31263–31271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen MJ et al (2013) STAT6 deficiency ameliorates severity of oxazolone colitis by decreasing expression of claudin-2 and Th2-inducing cytokines. J Immunol 190(4):1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan P et al (2011) Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene 30(29):3234–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escaffit F, Boudreau F, Beaulieu JF (2005) Differential expression of claudin-2 along the human intestine: implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol 203(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Holmes JL et al (2006) Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6(6):581–588

    Article  CAS  PubMed  Google Scholar 

  • Mankertz J et al (2004) Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochem Biophys Res Commun 314(4):1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Milatz S et al (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798(11):2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Piontek J et al (2011) Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 68(23):3903–3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy KM et al (2000) Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J Cell Sci 113 Pt 19:3387–3398

    CAS  PubMed  Google Scholar 

  • de Oliveira SS et al (2005) Claudins upregulation in human colorectal cancer. FEBS Lett 579(27):6179–6185

    Article  PubMed  Google Scholar 

  • Schmitz H et al (2000) Epithelial barrier and transport function of the colon in ulcerative colitis. Ann N Y Acad Sci 915:312–326

    Article  CAS  PubMed  Google Scholar 

  • Das P et al (2012) Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch 460(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Albrecht U et al (2014) Efficacy and safety of a herbal medicinal product containing myrrh, chamomile and coffee charcoal for the treatment of gastrointestinal disorders: a non-interventional study. BMJ Open Gastroenterol 1(1):e000015

    Article  PubMed  Google Scholar 

  • Abdul-Ghani RA, Loutfy N, Hassan A (2009) Myrrh and trematodoses in Egypt: an overview of safety, efficacy and effectiveness profiles. Parasitol Int 58(3):210–214

    Article  PubMed  Google Scholar 

  • Deng R (2007) Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovasc Drug Rev 25(4):375–390

    CAS  PubMed  Google Scholar