link.springer.com

Role of Allelopathy in Weed Management

  • ️Wed Jan 01 2014
  • Fahad S, Nie L, Rahman A, Chen C, Wu C, Saud S, Huang J (2013) Comparative efficacy of different herbicides for weed management and yield attributes in wheat. Am J Plant Sci 4:1241–1245

    Google Scholar 

  • Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manage Sci. doi:10.1002/ps.3598.

    Google Scholar 

  • Sodaeizadeh H, Hosseini Z (2012) Allelopathy: an environmentally friendly method for weed control. International conference on applied life sciences (ICALS2012), Turkey, September 10–12, 2012

    Google Scholar 

  • Bhowmik PC, Inderjit J (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Google Scholar 

  • Heap I (2008) The international survey of herbicide resistant weeds. http://www.weedscience.com/. Accessed 15 May 2013

  • Kudsk P, Streibig JC (2003) Herbicides—a two-edged sword. Weed Res 43:90–102

    CAS  Google Scholar 

  • Juraske R, Antón A, Castells F, Huijbregts MAJ (2007) Pest screen: a screening approach for scoring and ranking pesticides by their environmental and toxicological concern. Environ Int 33:886–893

    CAS  PubMed  Google Scholar 

  • Sethi A, Dilawari VK (2008) Spectrum of insecticide resistance in whitefly from upland cotton in Indian subcontinent. J Entomol 5:138–147

    Google Scholar 

  • Schreinemachers DM (2003) Birth malformations and other adverse perinatal outcomes in four U.S. wheat-producing states. Environ Health Persp 111:1259–1264

    CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd ed. Academic, Orlando

    Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011) The role of allelopathy in agricultural pest management. Pest Manage Sci 67:494–506

    Google Scholar 

  • Iqbal J, Cheema ZA (2007) Effect of allelopathic crops water extracts on glyphosate dose for weed control in cotton (Gossypium hirsutum L.). Allelopathy J 19:403–410

    Google Scholar 

  • Cheema ZA, Asim M, Khaliq A (2000) Sorghum allelopathy for weed control in cotton (Gossypium arboretum L.). Int J Agric Biol 2:37–40

    Google Scholar 

  • Matloob A, Khaliq A, Farooq M, Cheema ZA (2010) Quantification of allelopathic potential of different crop residues for the purple nut sedge suppression. Pak J Weed Sci Res 16:1–12

    Google Scholar 

  • Jabran K, Cheema ZA, Farooq M, Basra SMA, Hussain M, Rehman H (2008) Tank mixing of allelopathic crop water extracts with pendimethalin helps in the management of weeds in canola (Brassica napus) field. Int J Agri Biol 10:293–296

    CAS  Google Scholar 

  • Iqbal J, Cheema ZA (2008) Purple nut sedge (Cyperus rotundus L.) management in cotton with combined application of Sorgaab and S-Metolachlor. Pak J Bot 40:2383–2391

    CAS  Google Scholar 

  • Razzaq A, Cheema ZA, Jabran K, Farooq M, Khaliq A, Haider G, Basra SMA (2010) Weed management in wheat through combination of allelopathic water extracts with reduced doses of herbicides. Pak J Weed Sci Res 16:247–256

    Google Scholar 

  • Cheema ZA, Farooq M, Wahid A (2012a) Allelopathy: current trends and future applications. Springer-Verlag, Heidelberg

    Google Scholar 

  • Cheema ZA, Farooq M, Khaliq A (2012b) Application of allelopathy in crop production: success story from Pakistan. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy: current trends and future applications. Springer-Verlag, Heidelberg, pp 113–144

    Google Scholar 

  • Putnam AR, Nair MG, Barnes JB (1990) Allelopathy: a viable weed control strategy. In: Baker RR, Dunn PE (eds) New directions in biological control, alternatives for suppressing agricultural pests and diseases. Proceedings of a UCLA colloquium held at Frisco, Colorado, January 20–27, 1989, pp 317–322

    Google Scholar 

  • Dilday RH, Lin J, Yan W (1994) Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agri 34:907–910

    Google Scholar 

  • Narwal SS (1996) Potentials and prospects of allelopathy mediated weed control for sustainable agriculture. In: Narwal SS, Tauro P (eds) Allelopathy in pest management for sustainable agriculture. Proceedings of the international conference on allelopathy, Scientific Publishers, Jodhpur, pp 23–65

    Google Scholar 

  • Miller DA (1996) Allelopathy in forage crop systems. Agron J 88:854–859

    Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agro-ecosystems: allelopathy in cropping systems. Agron J 88:860–866

    Google Scholar 

  • Narwal SS, Sarmah MK, Tamak JC (1998) Allelopathic strategies for weed management in the rice-wheat rotation in northwestern India. In: Olofsdotter M (ed) Allelopathy in rice. Proceedings of the workshop on allelopathy in rice, 25–27 Nov. 1996, Manila (Philippines): International Rice Research Institute, IRRI Press, Manila

    Google Scholar 

  • Jamil M, Cheema ZA, Mushtaq MN, Farooq M, Cheema MA (2009) Alternative control of wild oat and canarygrass in wheat fields by allelopathic plant water extracts. Agron Sustain Dev 29:475–482

    Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Google Scholar 

  • Liebman M, Davis AS (2000) Integration of soil, crop, and weed management in low-external-input farming systems. Weed Res 40:27–47

    Google Scholar 

  • Baumann DT, Bastiaans L, Kropff MJ (2002) Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models. Agron J 94:734–742

    Google Scholar 

  • Ali Z, Malik MA, Cheema MA (2000) Studies on determining a suitable canola-wheat intercropping pattern. Int J Agri Biol 2:42–44

    Google Scholar 

  • Khan ZR, Hassanali A, Overholt W, Khamis TM, Hooper AM, Pickett JA, Wadhams LJ, Woodcock CM (2002) Control of Witch weed, Striga hermonthica by intercropping with Desmodium spp, and the mechanism defined as allelopathic. J Chem Ecol 28:1871–1885

    CAS  PubMed  Google Scholar 

  • Iqbal J, Cheema ZA, An M (2007) Intercropping of field crops in cotton for the management of purple nut sedge (Cyperus rotundus L.). Plant Soil 300:163–171

    CAS  Google Scholar 

  • Khalil SK, Mehmood T, Rehman A, Wahab S, Khan AZ, Zubair M, Mohammad F, Khan NU, Amanullah, Khalil IH (2010) Utilization of allelopathy and planting geometry for weed management and dry matter production of maize. Pak J Bot 42:791–803

    Google Scholar 

  • Cruz RD, Rojas E, Merayo A (1994) Management of Itch grass (Rottboellia cochinchinensis L.) in maize crop and in the fallow period with legume crops. Integr Pest Manage 31:29–35

    Google Scholar 

  • Olasantan FO, Lucas EO, Ezumah HC (1994) Effects of intercropping and fertilizer application on weed control and performance of cassava and maize. Field Crops Res 39:63–69

    Google Scholar 

  • Witcombe JR, Billore M, Singhal HC, Patel NB, Tikka SBS, Saini DP, Sharma LK, Sharma R, Yadav SK, Pyadavendra J (2008) Improving the food security of low-resource farmers: introducing horse gram into maize based cropping systems. Exp Agri 43:339–348

    Google Scholar 

  • Steiner KG (1984) Intercropping in tropical smallholder agriculture with special reference to West Africa. GTZ Publication, Eschborn, p 304

    Google Scholar 

  • Gliessman SR, Garcia ER (1979) The use of some tropical legumes in accelerating the recovery of productivity of soils in the low land humid tropics of Mexico. In: Tropical legumes: resources for the future. National Academy of Sciences, Washington, pp 292–298

    Google Scholar 

  • Bilalis D, Papastylianou P, Konstantas A, Patsiali S, Karkanis A, Efthimiadou A (2010) Weed suppressive effects of maize-legume intercropping in organic farming. Int J Pest Manage 56:173–181

    Google Scholar 

  • Bansal GL (1989) Allelopathic potential of linseed on Ranunculus arvensis. ln: Plant Science Research in India. Today and Tomorrow Publishers, New Delhi, pp 801–805

    Google Scholar 

  • Fujiyoshi PT (1998) Mechanisms of weed suppression by squash (Cucurbita spp.) intercropped in Corn (Z. mays L.). PhD Dissertation, University of California, Santa Cruz, p 89

    Google Scholar 

  • Olorunmaiye PM (2010) Weed control potential of five legume cover crops in maize/cassava intercrop in a Southern Guinea savanna ecosystem of Nigeria. Aust J Crop Sci 4:324–329

    Google Scholar 

  • Abraham CT, Singh SP (1984) Weed management in sorghum-legume intercropping systems. J Agri Sci 103:103–115

    Google Scholar 

  • Baumann DT, Krop MJ, Bastiaans L (2000) Intercropping leeks to suppress weeds. Weed Res 40:361–376

    Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Res 70:101–109

    Google Scholar 

  • Szumigalski A, Acker RV (2005) Weed suppression and crop production in annual intercrops. Weed Sci 53:813–825

    CAS  Google Scholar 

  • Midya A, Bhattacharjee K, Ghose SS, Banik P (2005) Deferred seeding of black gram (Phaseolus mungo L.) in rice (O. sativa L.) field on yield advantages and smothering of weeds. J Agron Crop Sci 191:195–201

    Google Scholar 

  • Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur J Agron 24:325–332

    Google Scholar 

  • Saucke H, Ackermann K (2006) Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res 46:453–461

    Google Scholar 

  • Midega CAO, Khan ZR, Amudavi DM, Pittchar J, Pickett JA (2010) Integrated management of Striga hermonthica and cereal stem borers in finger millet (Eleusine coracana L.) through intercropping with Desmodium intortum. Int J Pest Manage 56:145–151

    Google Scholar 

  • Naeem M (2011) Studying weed dynamics in wheat (Triticum aestivum L.)-canola (Brassica napus L.) intercropping system. M.Sc. thesis, Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Khorramdel S, Rostami L, Koocheki A, Shabahang J (2010) Effects of row intercropping wheat (Triticum aestivum L.) with canola (Brassica napus L.) on weed number, density and population. Proceedings of 3rd Iranian Weed Science Congress. 17–18 February 2010. Weed biology and ecophysiology, Babolsar, Iran, pp 411–414

    Google Scholar 

  • Arif M (2013) Exploiting crop allelopathy for weed management in wheat (Triticum aestivum L.). PhD thesis, Department of Agronomy, University of Agriculture, Faislabad, Pakistan

    Google Scholar 

  • Kimber RWL (1967) Phytotoxicity from plant residues: The influence of rotted wheat straw on seedling growth. Aust J Agri Res 18:361–374

    Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S (2001) Crop allelopathy and its role in ecological agriculture. In: Kohli RK, Harminder PS, Batish DR (eds) Allelopathy in agroecosystems. Food Products Press, New York, pp 121–162

    Google Scholar 

  • Mamolos AP, Kalburtji KL (2001) Significance of allelopathy in crop rotation. J Crop Prod 4:197–218

    Google Scholar 

  • Voll E, Franchini JC, Tomazon R, Cruz D, Gazziero DL, Brighenti AM (2004) Chemical interactions of Brachiaria plantaginea with Commelina bengalensis and Acanthospermum hispidum in soybean cropping systems. J Chem Ecol 30:1467–1475

    CAS  PubMed  Google Scholar 

  • Einhellig FA, Rasmussen JA (1989) Prior cropping with grain sorghum inhibits weeds. J Chem Ecol 15:951–960

    CAS  PubMed  Google Scholar 

  • Schreiber MM (1992) Influence of tillage, crop rotation and weed management on grain foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci 40:645–653

    Google Scholar 

  • Cernusko K, Boreky V (1992) The effect of fore crop, soil tillage and herbicide on weed infestation rate and on the winter wheat yield. Rostlinna Vyroba-UVTIZ 38:603–609

    Google Scholar 

  • Grodzinsky AM (1992) Allelopathic effects of cruciferous plants in crop rotation. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman and Hall, London, pp 77–85.

    Google Scholar 

  • Al-Khatib K, Libbey C, Boydston R (1997) Weed suppression with Brassica green manure crops in green pea. Weed Sci 45:439–445

    CAS  Google Scholar 

  • Teasdale JR, Mohler CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385–392

    CAS  Google Scholar 

  • Bilalis D, Sidiras N, Economou G, Vakali C (2003) Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. J Agron Crop Sci 189:233–241

    Google Scholar 

  • Narwal SS (2005) Role of allelopathy in crop production. J Herbologia 6:31

    Google Scholar 

  • Younis A, Bhatti MZM, Riaz A, Tariq U, Arfan M, Nadeem M, Ahsan M (2012) Effect of different types of mulching on growth and flowering of Freesia alba CV. Aurora. Pak J Agri Sci 49:429–433

    Google Scholar 

  • Lockerman RH, Putnam AR (1979) Evaluation of allelopathic cucumbers (Cucumis sativus) as an aid for weed control. Weed Sci 27:54–57

    Google Scholar 

  • Weston LA, Harmon R, Mueller S (1989) Allelopathic potential of sorghum sudangrass hybrid (sudex). J Chem Ecol 15:1855–1865

    CAS  PubMed  Google Scholar 

  • Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric 23:73–86

    Google Scholar 

  • Riaz MY (2010) Non-chemical weed management strategies in dry direct seeded fine grain aerobic rice (Oryza sativa L.). M.Sc. (Hons.) Thesis, Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Mahmood A, Cheema ZA (2004) Influence of sorghum mulch on purple nut sedge (Cyperus rotundus L.). Int J Agri Biol 6:86–88

    Google Scholar 

  • Ahmad S, Rehman A, Cheema ZA, Tanveer A, Khaliq A (1995) Evaluation of some crop residues for their allelopathic effects on germination and growth of cotton and cotton weeds. In: 4th Pakistan Weed Science Conference, Faisalabad, Pakistan, pp 63–71

    Google Scholar 

  • Wilson RE, Rice EL (1968) Allelopathy as expressed by Helianthus annuus and its role in old-field succession. Bull Torrey Bot Club 95:432–448

    CAS  Google Scholar 

  • Shilling DG, Liebl RA, Worsham AD (1985) Rye (Secale cereale L.) and wheat (Triticumn aestivum L.) mulch: The suppression of certain broad-leaves weeds and the isolation and identification of phytotoxins. In: Thompson AC (ed) Chemistry of allelopathy. ACS symposium series, American Chemical Society, Washington, pp 243–271

    Google Scholar 

  • Worsham AD (1991) Allelopathic cover crops to reduce herbicide input. Proc Southern Weed Sci Soc 44:58–64

    Google Scholar 

  • Lee HW, Ghimire SR, Shin DH, Lee IJ, Kim KU (2008) Allelopathic effect of the root exudates of K21, a potent allelopathic rice. Weed Biol Manage 8:85–90

    CAS  Google Scholar 

  • Aslam F (2010) Studying wheat allelopathy against horse purslane (Trianthema portulacastrum). M.Sc. Thesis, Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Batish DR, Arora K, Singh HP, Kohli RK (2007a) Potential utilization of dried powder of Tagetes minuta as a natural herbicide for managing rice weeds. Crop Prot 26:566–571

    Google Scholar 

  • Batish DR, Kaura M, Singh HP, Kohli RK (2007b) Phytotoxicity of a medicinal plant, Anisomeles indica, against Phalaris minor and its potential use as natural herbicide in wheat fields. Crop Prot 26:948–952

    Google Scholar 

  • Khaliq A, Matloob A, Farooq M, Mushtaq MN, Khan MB (2011) Effect of crop residues applied isolated or in combination on the germination and seedling growth of horse purslane (Trianthema portulacastrum L.). Planta Daninha 29:121–128

    Google Scholar 

  • Bernat W, Gawtonska H, Gawtonski SW (2004) Effectiveness of different mulches in weed management in organic winter wheat production. In: Oleszek W, Burda S, Bialy Z, StepienW, Kapusta I, Stepien K (eds) Abstracts, II European allelopathy symposium, allelopathy from understanding to application, 3–5 June 2004, Institute of Soil Science and Plant Cultivation, Czartoryskich 8, 24-100 Pulawy, p 118

    Google Scholar 

  • Ekeleme F, Chikoye D, Akobundu IO (2004) Changes in size and composition of weed communities during planted and natural fallows. Basic Appl Ecol 5:25–33

    Google Scholar 

  • Hiltbrunner J, Liedgens M, Bloch L, Stamp P, Streit B (2007) Legume cover crops as living mulches for winter wheat: components of biomass and the control of weeds. Eur J Agron 26:21–29

    Google Scholar 

  • Qasem JR (2003) Weeds and their control. University of Jordan Publications, Amman, p 628

    Google Scholar 

  • Lehman ME, Blum U (1997) Cover crop debris effects on weed emergence as modified by environmental factors. Allelopathy J 4:69–88

    Google Scholar 

  • Kaspar TC, Radke JK, Laflen JM (2001) Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion. J Soil Water Cons 56:160–164

    Google Scholar 

  • Sarrantonio M, Gallandt E (2003) The role of cover crops in North American cropping systems. J Crop Prod 8:53–74

    Google Scholar 

  • Price AJ, Stoll ME, Bergtold JS, Arriaga FJ, Balkcom KS, Kornecki TS, Raper RL (2008) Effect of cover crop extracts on cotton and radish radicle elongation. Commun Biomet Crop Sci 3:60–66

    Google Scholar 

  • Fujii Y, Heradata S (2005) A critical survey of allelochemicals in action, the importance of total activity and the weed suppression equation. In: Harper JDI, An M, Wu H, Kent JH (eds) Proceedings of fourth world congress on allelopathy ‘‘Establishing the scientific base’’, 21–26 Aug 2005, Charles Strut University, Wagga Wagga, NSW, pp 73–76

    Google Scholar 

  • Caamal-Maldonado JA, Jimenez-Osorino JI, Barragan AT, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36

    Google Scholar 

  • Kobayashi H, Miura S, Oyanagi A (2004) Effects of winter barley as a cover crop on the weed vegetation in a no-tillage soybean. Weed Biol Manage 4:195–205

    Google Scholar 

  • Putnam AR, DeFrank J (1983) Use of phytotoxic plant residues for selective weed control. Crop Prot 2:173–181

    Google Scholar 

  • Barnes JP, Putnam AR, Burke BA (1986) Allelopathic activity of rye (Secale cereal L.). In: Putnam AR, Tang CS (eds) The science of allelopathy. Willey Interscience, New York, pp 271–286

    Google Scholar 

  • Grimmer OP, Masiunas JB (2005) The weed control potential of oat cultivars. Hort Technol 15:140–144

    Google Scholar 

  • Creamer NG, Bennett MA, Stinner BR, Cardina J, Regnier EE (1996) Mechanisms of weed suppression in cover crop-based production systems. Hort Sci 31:410–413

    Google Scholar 

  • Hoffman ML, Weston LA, Snyder JC, Reigner EE (1996) Allelopathic influence of germinating seeds and seedlings of cover crops on weed spp. Weed Sci 44:579–589

    CAS  Google Scholar 

  • Forney DR, Foy CL (1985) Phytotoxicity of products from rhizospheres of a sorghum-sudangrass hybrid (S. bicolor x S. sudanense). Weed Sci 33:597–604

    CAS  Google Scholar 

  • Iqbal Z, Nasir H, Hiradate S, Fujii Y (2006) Plant growth inhibitory activity of Lycoris radiate Herb. and the possible involvement of lycorine as an allelochemical. Weed Biol Manage 6:221–227

    CAS  Google Scholar 

  • Peters EJ, Zam AHBM (1981) Allelopathic effects of tall fescue (Festuca arundinacea) genotypes. Agron J 73:56–58

    Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    CAS  PubMed  Google Scholar 

  • Cheema ZA, Luqman M, Khaliq A (1997) Use of allelopathic extracts of sorghum and sunflower herbage for weed control in wheat. J Anim Plant Sci 7:91–93

    Google Scholar 

  • Cheema ZA, Khaliq A, Akhtar S (2001) Use of Sorgaab (sorghum water extract) as a natural weed inhibitor in spring mungbean. Int J Agri Biol 3:515–518

    Google Scholar 

  • Cheema ZA, Iqbal M, Ahmad R (2002a) Response of wheat varieties and some rabi weeds to allelopathic effects of sorghum water extract. Int J Agric Biol 4:52–55

    Google Scholar 

  • Cheema ZA, Khaliq A, Ali K (2002b) Efficacy of Sorgaab for weed control in wheat grown at different fertility levels. Pak J Weed Sci Res 8:33–38

    Google Scholar 

  • Irshad A, Cheema ZA (2004) Effect of sorghum extract on management of barnyard grass in rice crop. Allelopathy J 14:205–213

    Google Scholar 

  • Iqbal J, Cheema ZA, Mushtaq MN (2009) Allelopathic crop water extracts reduce the herbicide dose for weed control in cotton (Gossypium hirsutum). Int J Agri Biol 11:360–366

    CAS  Google Scholar 

  • Jabran K, Cheema ZA, Farooq M, Hussain M (2010) Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus L.). Int J Agri Biol 12:335–340

    CAS  Google Scholar 

  • Nawaz R, Cheema ZA, Mahmood T (2001) Effect of row spacing and sorghum water extract on sunflower and its weeds. Int J Agri Biol 3:360–362

    Google Scholar 

  • Khaliq A, Cheema ZA, Mukhtar MA, Basra SMA (1999) Evaluation of sorghum (Sorghum bicolor) water extracts for weed control in soybean. Int J Agri Biol 1:23–26

    Google Scholar 

  • Ahmad A, Cheema ZA, Ahmad R (2000) Evaluation of Sorgaab as natural weed inhibitor in maize. J Anim Plant Sci 10:141–146

    Google Scholar 

  • Cheema ZA, Khaliq A, Mubeen M (2003a) Response of wheat and winter weeds to foliar application of different plant water extracts of sorghum (S. bicolor). Pak J Weed Sci Res 9:89–97

    Google Scholar 

  • Einhelling FA, Leather GR (1988) Potentials for exploiting allelopathy to enhance crop production. J Chem Ecol 14:1829–1844

    Google Scholar 

  • Cheema ZA, Farid MS, Khaliq A (2003b) Efficacy of concentrated Sorgaab with low rates of atrazine for weed control in maize. J Anim Plant Sci 13:48–51

    Google Scholar 

  • Cheema ZA, Khaliq A, Tariq M (2002c) Evaluation of concentrated Sorgaab alone and in combination with reduced rates of three pre-emergence herbicides for weed control in cotton (Gossypium hirsutum L.). Int J Agri Biol 4:549–552

    CAS  Google Scholar 

  • Cheema ZA, Khaliq A, Hussain R (2003c) Reducing herbicide rate in combination with allelopathic Sorgaab for weed control in cotton. Int J Agri Biol 5:1–6

    Google Scholar 

  • Awan IU, Khan MA, Zareef M, Khan EA (2009) Weed management in sunflower with allelopathic water extract and reduced doses of a herbicide. Pak J Weed Sci Res 15:19–30

    Google Scholar 

  • Razzaq A, Cheema ZA, Jabran K, Hussain M, Farooq M, Zafar M (2012) Reduced herbicide doses used together with allelopathic sorghum and sunflower water extracts for weed control in wheat. J Plant Prot Res 52:281–285

    CAS  Google Scholar 

  • Rehman A, Cheema ZA, Khaliq A, Arshad M, Mohsan S (2010) Application of sorghum, sunflower and rice water extract combinations helps in reducing herbicide dose for weed management in rice. Int J Agri Biol 12:901–906

    Google Scholar 

  • Wazir I, Sadiq M, Baloch MS, Awan IU, Khan EA, Shah IH, Nadim MA, Khakwani AA, Bakhsh I (2011) Application of bio-herbicide alternatives for chemical weed control in rice. Pak J Weed Sci Res 17:245–252

    Google Scholar 

  • Latifi P, Jamshidi S (2011). Management of corn weeds by broomcorn Sorgaab and Foramsulfuron reduced doses integration. International conference on biology, environment and chemistry, IACSIT Press, Singapoor

    Google Scholar 

  • Khan MB, Ahmad M, Hussain M, Jabran K, Farooq S, Waqas-Ul-Haq M (2012) Allelopathic plant water extracts tank mixed with reduced doses of atrazine efficiently control Trianthema portulacastrum L. in Zea mays L. J Anim Plant Sci 22:339–346

    CAS  Google Scholar 

  • Khaliq A, Aslam Z, Cheema ZA (2002) Efficacy of different weed management strategies in mungbean (Vigna radiata L.). Int J Agri Biol 4:237–239

    Google Scholar 

  • Cheema ZA, Hussain S, Khaliq A (2003d) Efficacy of Sorgaab in combination with allelopathic water extracts and reduced rates of pendimethalin for weed control in mungbean (Vigna radiata). Indus J Plant Sci 2:21–25

    Google Scholar 

  • Cheema ZA, Iqbal J, Khaliq A (2003e) Reducing isoprotron dose in combination with Sorgaab for weed control in wheat. Pak J Weed Sci Res 9:153–160

    Google Scholar 

  • Worthington M, Reberg-Horton SC (2013) Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability. J Chem Ecol 39:213–231

    CAS  PubMed  Google Scholar 

  • Lemerle D, Verbeek B, Cousens RD, Coombes N (1996) The potential for selecting wheat varieties strongly competitive against weeds. Weed Res 36:505–513

    Google Scholar 

  • Bertholdsson NO (2005) Early vigour and allelopathy-two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res 45:94–102

    Google Scholar 

  • Xu GF, Zhang FD, Li TL, Wu D, Zhang YH (2010) Induced effects of exogenous phenolic acids on allelopathy of a wild rice accession (Oryza longistaminata, S37). Rice Sci 17:135–140

    CAS  Google Scholar 

  • Fay PK, Duke WB (1977) An assessment of allelopathic potential in Avena germplasm. Weed Sci 25:224–228

    CAS  Google Scholar 

  • Sarmah MK, Narwal SS, Yadava JS (1992) Smothering effect of Brassica species on weeds. In: Narwal SS, Tauro P (eds) Proceeding of first national symposium allelopathy in agro-ecosystems. Haryana Agricultural University, Indian Society of Allelopathy, Hisar, pp 51–55

    Google Scholar 

  • Narwal SS, Sarmah MK, Dahiya DS, Kapoor RL (1992) Smothering effect of pearl millet genotypes on weed species. In: Tauro P, Narwal SS (eds) Proceeding national symposium allelopathy in agro-ecosystems. Indian Society of Allelopathy, Department of Agronomy, Haryana Agricultural University, Hisar, pp 48–50

    Google Scholar 

  • Callaway MB (1990) Crop varietal tolerance to weeds: a compilation. Publication Series No. 1990-1. Cornell University, Ithaca.

    Google Scholar 

  • Shili-Touzi I, Tourdonnet SD, Launay M, Dore T (2010) Does intercropping winter wheat (Triticum aestivum) with red fescue (Festuca rubra) as a cover crop improve agronomic and environmental performance? A modeling approach. Field Crops Res 116:218–229

    Google Scholar 

  • Haan RL, Wyse DL, Ehike NJ, Maxwell BD, Putnam DH (1994) Simulation of spring seeded smother plant for weed control in corn. Weed Sci 42:35–43

    Google Scholar 

  • Lin W, Kim KU, Liang K, Guo Y (2000) Hybrid rice with allelopathy. In: Kim KU, Shin DH (eds) Rice allelopathy. Proceeding of the international workshop in rice allelopathy, 17–19 August 2000, Kyungpook National University, Taegu, Korea, pp 49–56

    Google Scholar 

  • Gealy DR, Moldenhauer KAK, Jia MH (2013) Field performance of STG06 L-35-061, a new genetic resource developed from crosses between weed-suppressive indica rice and commercial southern U.S. long-grains. Plant Soil 1–17

    Google Scholar 

  • Bertholdsson NO (2007) Varietal variation in allelopathic activity in wheat and barley and possibilities for use in plant breeding. Allelopathy J 19:193–201

    Google Scholar 

  • Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44:78–86

    Google Scholar 

  • Yan WG, McClung AM (2010) Rondo a long-grain indica rice with resistances to multiple diseases. J Plant Reg 4:131–136

    Google Scholar 

  • Gealy DR, Yan W (2012) Weed suppression potential of ‘Rondo’ and other indica rice germplasm lines. Weed Technol 26:524–527

    Google Scholar 

  • Courtois B, Olofsdotter M (1998) Incorporating the allelopathy trait in upland rice breeding programs. In: Olofsdotter M (ed) Allelopathy in rice. IRRI Publishing, Los Banos, pp 57–68

    Google Scholar 

  • Coleman RD, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust J Agric Res 52:1235–1246

    CAS  Google Scholar 

  • Mokhtari S, Galwey NW, Cousens RD, Thurling N (2002) The genetic basis of variation among wheat F3 lines intolerance to competition by ryegrass (Lolium rigidum). Euphytica 124:355–364

    CAS  Google Scholar 

  • Seavers GP, Wright KJ (1999) Crop canopy development and structure influence weed suppression. Weed Res 39:319–328

    Google Scholar 

  • Wu HJ, Pratley D, Lemerle, Haig T (2000) Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust J Agri Res 51:259–266

    Google Scholar 

  • Jensen LB, Courtois B, Olofsdotter M (2008) Quantitative trait loci analysis of allelopathy in rice. Crop Sci 48:1459–1469

    Google Scholar 

  • Zhou YJ, Cao CD, Zhuang JY, Zheng KL, Guo YQ, Ye M, Yu LQ (2007) Mapping QTL associated with rice allelopathy using the rice recombinant inbred lines and specific secondary metabolite marking method. Allelopathy J 19:479–485

    Google Scholar 

  • Chen XH, Hu F, Kong CH (2008) Varietal improvement in rice allelopathy. Allelopathy J 22:379–384

    CAS  Google Scholar 

  • Wu H, Pratley J, Ma W, Haig T (2003) Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor Appl Genet 107:1477–1481

    CAS  PubMed  Google Scholar 

  • Bertholdsson NO (2010) Breeding spring wheat for improved allelopathic potential. Weed Res 50:49–57

    Google Scholar 

  • Pérez FJ, Ormemeño-Núñez J (1993) Weed growth interference from temperate cereals: the effect of a hydroxamic-acids-exuding rye (Secale cereale L.) cultivar. Weed Res 33:115–119

    Google Scholar 

  • Overland L (1966) The role of allelopathic substances in the “smother crop” barley. Am J Bot 53:423–432

    CAS  Google Scholar 

  • Pethó M (1992) Occurrence and physiological role of benzoxazinones and their derivates. lll. Possible role of 7-methoxybenzoxazinone in the uptake of maize. Acta Agron Hung 41:57–64

    Google Scholar 

  • Liu DL, Lovett JV (1993) Biologically active secondary metabolites of barley. ll. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244

    CAS  PubMed  Google Scholar 

  • Friebe A, Wieland I, Schulz M (1996) Tolerance of Avena sativa to the allelochemical benzoxazolinone - degradation of BOA by rootcolonizing bacteria. Angew Botanik 70:150–154

    CAS  Google Scholar 

  • Niemeyer HM, Jerez JM (1997) Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestrum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79:10–14

    CAS  Google Scholar 

  • Ebana K, Yan W, Dilday RH, Namai H, Okuno K (2001) Analysis of QTLs associated with the allelopathic effect of rice using water-soluble extracts. Breed Sci 51:47–51

    CAS  Google Scholar 

  • Jensen LB, Cortois B, Shen LS, Li ZK, Olofsdotter M, Mauleon RP (2001) Locating genes controlling allelopathic effects against barnyard grass in upland rice. Agron J 93:21–26

    CAS  Google Scholar 

  • Duke SO, Bajasa J, Pan Z (2013) Omics method for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertin C, Weston LA, Kaur H (2008) Allelopathic crop development: Molecular and traditional plant breeding approaches. Plant Breed Rev 30:231–258

    CAS  Google Scholar 

  • Yang LT, Mickelson S, See D, Blake TK, Fischer AM (2004) Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization. J Exp Bot 55:2607–2616

    CAS  PubMed  Google Scholar 

  • Hayashi H, Czaja I, Lubenow H, Schell J, Walden R (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258:1350–1353

    CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282:34013–34018

    CAS  PubMed  Google Scholar 

  • Kato-Noguchi H, Peters RJ (2013) The role of momilactones in rice allelopathy. J Chem Ecol 39:175–185

    CAS  PubMed  Google Scholar 

  • Fang CX, Xiong J, Qiu L, Wang HB, Song BQ, He HB, Lin RY, Lin WX (2009) Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul 57:163–172

    CAS  Google Scholar 

  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochem 70:1645–1651

    CAS  Google Scholar 

  • Fujiyoshi PT, Gliessman SR, Langenheim JH (2007) Factors in the suppression of weeds by squash inter-planted in corn. Weed Biol Manage 7:105–114

    Google Scholar