An Efficient Integrator that Uses Gauss-Radau Spacings
References
Batrakov, Yu. N .:1982, ‘Methods of Computation of the Perturbed Motion of Small Bodies in the Solar System’ inSun and Planetary System, (Proceedings of the VI European Meeting in Astronomy), W. Fricke and G. Teleki, editors, D. Reidel Publishing Co., Dordrecht. pp415–419
Bettis, D. G. and Szebehely, V.: 1972, ‘Treatment of Close Approaches in the Numerical Integration of the Gravitational Problem of N-bodies’ Gravitational N-Body Problem, M. Lecar, editor, D. Reidel Publishing Co., Dordrecht, pp388–405. See p395
Bulirsch, R. and Stoer, J.: 1966. ‘Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods’Num. Math.,8, pp1–13
Butcher, JC.: 1964, ‘Integration Processes Based on Radau Quadrature Formulas’,Math. Comp.18, pp233–344
Carusi, A., Kresak, L., Perozzi, E., and Valsecchi, G. B.: 1985 ‘The Long-Term Evolution Project’ inDynamics of Comets: Their Origin and Evolution, A. Carusi and G.B. Valsecchi, editors, D. Reidel Publishing Co., Dordrecht. (IAU Colloq. 83, Rome, June 1984 ) This volume
Eckert, W. J., Brouwer, D., and Clemence, G. M. : 1951 ‘Coordinates of the Five Outer Planets, 1653–2060’Astron. Papers Am. Ephemeris,12
Everhart, E.: 1974a, ‘Implicit Single-Sequence Methods for Integrating Orbits’, Celest. Mech. 10, pp35–55
Everhart, E.: 1974b ‘An Efficient Integrator of Very High Order and Accuracy’ Denver Res. Inst. Tech. Report, 1 July 1974 (unpublished)
Everhart E. and Marsden, B. G.: 1983, ‘New Original and Future Cometary Orbits’Astron. J.,88, pp135–137
Fehlberg, E.: 1972, ‘Classical Eighth- and Lower Order Runge-Kutta-Nystrom Formulas with Stepsize Control for Special Second-Order Differential Equations’,NASA Tech. Rept., NASA TR R-381
Gallaher, L. J. and Perlin, I. E.: 1966. E.: 1966, ‘A comparison of Several Methods of Numerical Integration of Nonlinear Differential Equations’. Presented at the SIAM meeting, Univ. of Iowa, March. 1966 (unpublished). See Krogh, 1973.
House, F., Weiss, G., and Weigandt, R. : 1978, ‘Numerical Integration of Stellar Orbits’,Celest. Mech.,18, pp311–318
Krogh, F. T. : 1973, ‘On Testing a Subroutine for Numerical Integration of Ordinary Differential Equations’, J. Assoc. Comput. Mach., 20, pp545–562
Levi-Civita, T.: 1903, ‘Traiettorie singulars ed arts nel problems ristretto del tre corp’,Annali di Mat.9, pp1–32
Marsden, B. G., Sekanina, Z., and Everhart, E. : 1978, ‘New Osculating Orbits for 110 Comets and Analysis of Original Orbits for 200 Comets’.Astron. J.,83, pp64–71
Newton, R. R . : 1959, ‘Periodic Orbits of a Planetoid’,Smithson. Contrib. Astrophys.3, No. 7, pp69–78
Papp, K. A., Innanen, K. A., and Patrick, A. T. : 1977, 1980, ‘A Comparison of Five Algolrithms for Numerical Orbit Computation in Galaxy Models’,Celest. Mech.,18, pp277–286, and 21, 337–349
Papp, K. A., Innanen, K. A., and Patrick, A. T. : 1977, 1980, ‘A Comparison of Five Algolrithms for Numerical Orbit Computation in Galaxy Models’,Celest. Mech.,18, pp277–286, and 21, 337–349
Shefer, V.A.: 1982, ‘Variational Equations of the Perturbed Two Body Problem in Regularized Form’, Institute of Theoretical Astronomy, Leningrad. Publication Na.37. An 11th-order version of RADAR is used
Stroud, A. H. and Secrest, D. : 1966,Gaussian Quadrature Formulas Prentice Hall, Inc. Englewood Cliffs, N.J., See Table 12 (Radau spacings).