link.springer.com

Unitary representations of non-compact supergroups - Communications in Mathematical Physics

  • ️Günaydin, M.
  • ️Tue Mar 01 1983

References

  1. For a review of the theory of unitary representations of non-compact groups see: Schmid, W.: Proc. of the International Congress of Mathematicians, Helsinki (1978); Academia Scientiarum Fennica (Helsinki, 1980)

  2. Wess, J., Zumino, B.: Supergauge transformations in four dimensions. Nucl. Phys. B70, 39 (1974)

    Google Scholar 

  3. Volkov, D.V., Akulov, V.P.: Is the neutrino a Goldstone particle? Phys. Lett.46B, 109 (1973)

    Google Scholar 

  4. Kac, V.G.: Adv. Math.26, 8 (1977)

    Google Scholar 

  5. See also, Freund, P.G.O., Kaplansky, I.: Simple supersymmetries. J. Math. Phys.17, 228 (1976)

    Google Scholar 

  6. Kac, V.G.: Representations of classical Lie superalgebras. In: Differential geometrical methods in mathematical physics. Bleuler, K., Petry, H.R., Reetz, A. (eds.). Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  7. Ne'eman, Y., Sternberg, S.: Internal supersymmetry and unification. Proc. Natl. Acad. Sci. (USA)77, 3127 (1980)

    Google Scholar 

  8. Marcu, M.: The representations of Spl(2,1) — an example of representations of basic superalgebras. J. Math. Phys.21, 1277 (1980)

    Google Scholar 

  9. Dondi, P.H., Jarvis, P.D.: Assignments in strong-electroweak unified models with internal and spacetime supersymmetry. Z. Physik C4, 201 (1980)

    Google Scholar 

  10. Balantekin, A.B., Bars, I.: Dimension and character formulas for Lie supergroups, J. Math. Phys.22, 1149 (1981), Representations of supergroups. J. Math. Phys.22, 1810 (1981) and Branching Rules for the Supergroup SU(N/M) from those of SU(N + M). J. Math. Phys.23, 1239 (1982)

    Google Scholar 

  11. For a comprehensive review and further references to the representations of compact supergroups see: Bars, I.: Supergroups and their Representations, Yale preprint YTP-8-25, Proceedings of School on Supersymmetry in Physics, Mexico (December 1981) (to be published)

  12. Balantekin, A.B., Bars, I., Iachello, F.: Nucl. Phys. A370, 284 (1981)

    Google Scholar 

  13. Balantekin, A.B.: Ph. D. Thesis, Yale University (1982) (unpublished)

  14. Bars, I., Morel, B., Ruegg, H.: CERN preprint TH-3333 (1982) to appear in J. Math. Phys. (1983)

  15. Cremmer, E., Ferrara, S., Scherk, J.: SU(4) invariant supergravity theory. Phys. Lett.74, 61 (1978)

    Google Scholar 

  16. Cremmer, E., Julia, B.: The SO(8) supergravity. Nucl. Phys. B159, 141 (1979)

    Google Scholar 

  17. Günaydin, M., Saçlioğlu, C.: Bosonic construction of the Lie algebras of some non-compact groups appearing in the supergravity theories and their oscillator-like unitary representations. Phys. Lett.108B, 180 (1982)

    Google Scholar 

  18. Günaydin, M., Saçlioğlu, C.: Oscillator-like unitary representations of non-compact groups with a Jordan structure and the non-compact groups of supergravity. Commun. Math. Phys.87, 159–179 (1982)

    Google Scholar 

  19. For a discussion of the relevance of the unitary representations given in [13] and [14] to the attempts to extract a realistic grand unified theory from supergravity theories, see: Günaydin, M.: Unitary realizations of non-compact groups of supergravity, talk presented at the Second Europhysics Study Conference on Unification of Fundamental Interactions, Erice, Sicily (1981); CERN preprint TH-3222 (1981)

  20. Loebl, E.M. (ed.): Group theory and its applications, Vols. I–III. New York: Academic Press 1968

    Google Scholar 

  21. Wybourne, B.G.: Classical groups for physicists. New York: Wiley 1974

    Google Scholar 

  22. Dyson, F.J.: Symmetry groups in nuclear and particle physics. New York: Benjamin 1966

    Google Scholar 

  23. Gürsey, F. (ed.): Group theoretical concepts and methods in elementary particle physics. New York: Gordon and Breach 1964

    Google Scholar 

  24. Bargmann, V.: Ann. Math.48, 568 (1947); Commun. Pure Appl. Math.14, 187 (1961)

    Google Scholar 

  25. Kashiwara, M., Vergne, M.: Invent. Math.44, 1 (1978)

    Google Scholar 

  26. Howe, R.: Classical invariant theory. Yale Univ. preprint, unpublished; and Transcending classical invariant theory. Yale Univ. preprint (unpublished)

  27. R. Howe has suggested the possibility of extending the dual pair notion to the case of superalgebras (private communication). See also [19]

  28. We should note that when the generators are represented by ordinary matrices rather than oscillators,θ α will, of course, commute with those matrices

  29. Gürsey, F., Marchildon, L.: Spontaneous symmetry breaking and nonlinear invariant Lagrangians: Applications to SU(2)⊗U(2) and OSp(1/4). Phys. Rev. D17, 2038 (1978); The graded Lie groups SU(2,2/1) and OSp(1/4). J. Math. Phys.19, 942 (1978)

    Google Scholar 

  30. For a review of coherent states and their applications, see: Perelomov, A.M.: Sov. Phys. Usp.20, 703 (1977)

    Google Scholar 

  31. For a study of the analyticity properties of coherent state representations of Lie groups and further references on the subject, see: Onofri, E.: A note on coherent state representations of Lie groups. J. Math. Phys.16, 1087 (1974)

    Google Scholar 

  32. Gelfand, I.M., Graev, M.I., Vilenkin, N.Y.: Generalized functions, Vol. 5. New York: Academic Press 1968. For an operator treatment of the unitary representations of some non-compact groups related to the Poincaré group à la Gelfand et al., see: Gürsey, F.: Representations of some non-compact groups related to the Poincaré group. Yale Univ. mimeographed notes (1971)

    Google Scholar 

  33. Bars, I., Gürsey, F.: Operator treatment of the Gelfand-Naimark basis for SL(2,C)*. J. Math. Phys.13, 131 (1972)

    Google Scholar 

  34. Gürsey, F., Orfanidis, S.: Conformal invariance and field theory in two dimensions. Phys. Rev. D7, 2414 (1973)

    Google Scholar 

  35. Tits, J.: Nederl. Akad. van Wetenschapp65, 530 (1962)

    Google Scholar 

  36. Koecher, M.: Am. J. Math.89, 787 (1967)

    Google Scholar 

  37. Bars, I., Günaydin, M.: Construction of Lie algebras and Lie superalgebras from ternary algebras. J. Math. Phys.20, 1977 (1979)

    Google Scholar 

  38. Bars, I.: Proceedings of the 8th Intern. Coll. on Group Theoretical Methods. Annals of Israel Physical Society, Vol. 3 (1980)

  39. Günaydin, M.: Proceedings of the 8th Intern. Coll. on Group Theoretical Methods. Annals of Israel Physical Society, Vol. 3 (1980), p. 279

  40. Kac, V.: Commun. Algebra5, 1375 (1977)

    Google Scholar 

Download references