link.springer.com

Oscillator-like unitary representations of non-compact groups with a jordan structure and the non-compact groups of supergravity - Communications in Mathematical Physics

  • ️Saçlioglu, C.
  • ️Tue Jun 01 1982

References

  1. Cremmer, E., Julia, B.: The N = 8 supergravity theory, I. The Lagrangian. Phys. Lett.80B, 48 (1978); “The SO(8) Supergravity,” Nucl. Phys.B159, 141 (1979)

    Google Scholar 

  2. Cremmer, E., Scherk, J., Ferrara, S.: “SU(4) invariant supergravity theory.” Phys. Lett.74B, 61 (1978)

    Google Scholar 

  3. For earlier references and for a formulation showing the connection between generalized σ models and extended supergravity theories in a clear form see, Gaillard, M. K., Zumino, B.: CERN preprint TH. 3078 (1981)

  4. Ellis, J., Gaillard, M. K., Maiani, L., Zumino, B.: In Unification of the fundamental particle interactions by Ferrara, S., Ellis, J., van Nieuwenhuizen, P., (eds.), N.Y.: Plenum Press, 1980, 69; Ellis, J., Gaillard, M. K., and Zumino, B.: A grand unified theory obtained from supergravity. Phys. Lett.94B, 343 (1980)

    Google Scholar 

  5. Ellis, J., Gaillard, M. K., Zumino, B.: CERN reprint TH. 3152 (1981)

  6. Haber, H. E., Hinchliffe, I., Rabinovici, E.: 'The CPN-1 model with unconstrained variables. Nucl. Phys.B172, 458 (1980)

    Google Scholar 

  7. Zumino, B.: Proc. 1980 Madison Inst. Conf. on High Energy Physics, Durand, L., Pondrom, L. G. (eds.), N.Y.: A.I.P., 1981, p. 964; and Superspace and supergravity. Hawking, S. W., Rocek, M. (eds.), Cambridge.: Cambridge University Press 1981, p. 423

    Google Scholar 

  8. Derendinger, J. P., Ferrara, S., Savoy, C. A.: CERN preprint TH. 3025 (1981), unpublished and “Flavour and Superunification,” Nucl. Phys.B188, 77 (1981); Kim, J. E., Song, H. S.: Seoul National University preprint (1981)

    Google Scholar 

  9. Günaydin, M., Saçlioglu, C.: Bosonic construction of the Lie algebras of some Non-compact groups appearing in supergravity theories and their oscillator-like unitary representations. Phys. Lett.108B, 180 (1982)

    Google Scholar 

  10. Jacobson, N.: Am. J. Math.71, 149 (1949) and Structure and representations of Jordan algebras. Ann. Math. Soc. Colloq. Publ. (1968)

  11. Hirzebruch, U.: Math. Zeitschrift115, 371 (1970)

    Google Scholar 

  12. For an extensive list of references see Wybourne, B. G.: Classical groups for physicists. New York: J. Wiley and Sons, 1974. For further references see Ref. [13]

    Google Scholar 

  13. Group Theory and its applications, Loebl, E. M., (ed.), New York: Academic Press, 1968

    Google Scholar 

  14. Kantor, I. L.: Trudy Sem. Vector. Anal.16, 407 (1972) (Russian)

    Google Scholar 

  15. Bars, I., Günaydin, M.: (unpublished)

  16. This is because supersymmetry and unitarity together lead in general to reducible representations. For details see Ref. [35].

  17. Gell-Mann, M.: (private communication)

  18. For an outline of Gell-Mann's method, see Hermann, R.: Lie groups for physicists. New York: Benjamin. 1966, p. 182

    Google Scholar 

  19. Gürsey, F.: Representations of some non-compact groups related to the Pioncaré Group, Yale University mimeographed notes (1971); Bars, I., Gürsey, F.: Operator treatment of the Gellfand-Naimark basis for SL(2.C). J. Math. Phys.13, 131 (1972); Gürsey, F., Orfanidis, S.: “Conformal invariance and field theory in two dimensions. Phys. Rev.D7, 2412 (1973)

    Google Scholar 

  20. Tits, J.: Nederl. Akad. van Wetenschappen65, 530 (1962)

    Google Scholar 

  21. Koecher, M.: Am. J. Math.89, 787 (1967)

    Google Scholar 

  22. Bars, I., Günaydin, M.: Construction of Lie algebras and Lie superalgebras from ternary algebras. J. Math. Phys.20, 1977 (1979)

    Google Scholar 

  23. Günaydin M.: Proceedings of the 8th Int. Colloq. on Group Theoretical Methods. Ann. Israel Phys. Soc.3, 279 (1980)

    Google Scholar 

  24. Meyberg, K.: Math. Zeitschrift115, 58 (1970)

    Google Scholar 

  25. Wolf, J. A.: J. Math. Mech.13, 489 (1964)

    Google Scholar 

  26. Loos, O.: Bounded symmetric domains and Jordan pairs. Univ. of California (1977)

  27. This possibility has arisen out of discussions with I. Bars

  28. Schmid, W.: Proceedings of the International Congress of mathematicians, Helsinki (1978), Academia Scientiarum Fennica (Helsinki, 1980)

  29. To make this statement definitive one has to check explicitly the integrability properties of the matrix elements for each representation

  30. Freudenthal, H.: Indag. math.6, 81 (1953)

    Google Scholar 

  31. Lemire, F. W., Patera, J.: Convergence number, a generalization of SU(3) triality. J. Math. Phys.21, 2026 (1980)

    Google Scholar 

  32. Günaydin, M., Gürsey, F. Quark structure and octonions, J. Math. Phys.14, 1651 (1973)

    Google Scholar 

  33. Cremmer, E.: in Unification of the fundamental particle interactions. Ferrara, S., Ellis, J. van Nieuwenhuizen, P. (eds.) New York. (Plenum Press, 1980, pp. 137–155; Schwarz, J. H.: N-8 Supergravity in various dimensions and the implications for four dimensions. Phys. Lett.95B, 219 (1980)

    Google Scholar 

  34. Hecht, H., Schmid, W.: Invent. Math.31, 129 (1975)

    Google Scholar 

  35. Ellis, J., Gaillard, M. K., Günaydin, M., Zumino, B.: (in preparation)

  36. Gelfand, I. M., Graev, M. I., Vilenkin, N. Y.: Generalized functions, Vol. 5. N. Y.: Academic Press 1968

    Google Scholar 

  37. Pauli, W.: On the conservation of the Lepton charge. Nuovo Cimento6, 204 (1957); Gursey, F.: “Relation of charge independence and Baryon conservation to Pauli's transformation.” Nuovo Cimento7, 411 (1958)

    Google Scholar 

  38. Feshbach, H., Villars, F.: “Elementary Relativistic wave Mechanics of Spin 0 and Spin 1/2 Particles.” Rev. Mod. Phys.30, 24 (1958)

    Google Scholar 

  39. Perelomov, A. M.: Theor. Math. Phys.16, 852 (1973)

    Google Scholar 

Download references