link.springer.com

Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten - Inventiones mathematicae

  • ️Knop, Friedrich
  • ️Thu Oct 01 1987

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

We describe a new construction to obtain a simple hypersurface singularity from the corresponding simple complex Lie-groupG. LetX be the closed orbit in the projective space attached to the Lie algebra\(\mathfrak{g}\) ofG. Consider a regular nilpotent element\(y_0 \in \mathfrak{g}\) and denote byH y 0 the hyperplane orthogonal toy 0 with respect to the Killing form. Then the hyperplane sectionXH y 0, has exactly one singularity which is simple of desired type. By variation of the pointy 0 we obtain a versal deformation. The construction generalizes with minor modifications to any characteristicp of the basefield. Even in bad characteristic we recover at least the positive part of the semiuniversal deformation. We prove that forp=2 a simple, quasihomogeneous singularity of type A7 resp. D8 is adjacent to E7 resp. E8 provided its dimension is even. Furthermore A8 is adjacent to E8 forp=3.

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Literatur

  1. Arnol'd, V.I.: Normal forms for functions near degrenerate critical points, the Weyl groups ofA k ,D k ,E k and Lagrangian singularities. Funct. Anal. Appl.6, 254–272 (1972)

    Google Scholar 

  2. Artin, M.: Coverings of the rational double points in characteristicp. In: Baily, W.L., jr., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry. Iwanami Shoten, Publ., Cambridge Univ. Press 1977

  3. Bardsley, P., Richardson, R.W.: Étale slices for algebraic transformation groups in characteristicp. Proc. Lond. Math. Soc.51, 295–317 (1985)

    Google Scholar 

  4. Borel, A., Carter, R., Curtis, C.W., Iwahori, N., Springer, T.A., Steinberg, R.: Seminar on algebraicgroups and related finite groups. (Lect. Notes Math. Vol. 131) Berlin Heidelberg New York: Springer 1970

    Google Scholar 

  5. Borel, A., Siebenthal, J. de: Les sous-groupes fermésde rang maximum des groupes de Lie clos. Comm. Math. Helv.23, 200–221 (1949)

    Google Scholar 

  6. Bourbaki, N.: Groupes et algébres des Lie. Chap. 4, 5, 6: Masson: Paris 1981; Chap. 7, 8: Diffusion C.C.L.S.: Paris 1975

    Google Scholar 

  7. Brieskorn, E.: Singular elements of semisimple algebraic groups. In: Actes Congrès Int. Math.2, 279–284 (1970)

  8. Dieudonné, J.: La géométrie des groupes classiques. 2. ed. Berlin Göttingen Heidelberg: Springer 1963

    Google Scholar 

  9. Durfee, A.H.: Fifteen characterisations of rational double points and simple critical points. Eins. Math., II. Ser.25, 132–163 (1979)

    Google Scholar 

  10. Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. A.M.S. Transl. Ser. 26, 111–245 (1957)

    Google Scholar 

  11. Hesselink, W.H.: Nilpotency in classical groups over a field of characteristic 2. Math. Z.166, 165–181 (1979)

    Google Scholar 

  12. Holt, D.F., Spaltenstein, N.: Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic. J. Aust. Math. Soc.38, 330–350 (1985)

    Google Scholar 

  13. Jacobs, K.: Einführung in die Kombinatorik. Berlin: de Gruyter 1983

    Google Scholar 

  14. Kempf. G.: Linear systems on homogeneous spaces Ann. Math.103, 557–591 (1976)

    Google Scholar 

  15. Saito, K.: Einfach-elliptische Singularitäten. Invent. math.23, 289–325 (1974)

    Google Scholar 

  16. Slodowy, P.: Simple singularities and simple algebraic groups. (Lect. Notes Math. Vol. 815) Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  17. Springer, T.A.: Some arithmetical results on semi-simple Lie algebras. Publ. math. IHES30, 115–142 (1966)

    Google Scholar 

  18. Steinberg, R.: Conjugacy classes in algebraic groups. (Lect. Notes Math. Vol. 366) Berlin Heidelberg New York: Springer 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematisches Institut, Rheinsprung 21, CH-4051, Basel

    Friedrich Knop

Authors

  1. Friedrich Knop

    You can also search for this author inPubMed Google Scholar

Additional information

Unterstützt durch den Schweizerischen Nationalfonds

About this article

Cite this article

Knop, F. Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten. Invent Math 90, 579–604 (1987). https://doi.org/10.1007/BF01389179

Download citation

  • Issue Date: October 1987

  • DOI: https://doi.org/10.1007/BF01389179