Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten - Inventiones mathematicae
- ️Knop, Friedrich
- ️Thu Oct 01 1987
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Summary
We describe a new construction to obtain a simple hypersurface singularity from the corresponding simple complex Lie-groupG. LetX be the closed orbit in the projective space attached to the Lie algebra\(\mathfrak{g}\) ofG. Consider a regular nilpotent element\(y_0 \in \mathfrak{g}\) and denote byH y 0 the hyperplane orthogonal toy 0 with respect to the Killing form. Then the hyperplane sectionX⊃H y 0, has exactly one singularity which is simple of desired type. By variation of the pointy 0 we obtain a versal deformation. The construction generalizes with minor modifications to any characteristicp of the basefield. Even in bad characteristic we recover at least the positive part of the semiuniversal deformation. We prove that forp=2 a simple, quasihomogeneous singularity of type A7 resp. D8 is adjacent to E7 resp. E8 provided its dimension is even. Furthermore A8 is adjacent to E8 forp=3.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Literatur
Arnol'd, V.I.: Normal forms for functions near degrenerate critical points, the Weyl groups ofA k ,D k ,E k and Lagrangian singularities. Funct. Anal. Appl.6, 254–272 (1972)
Artin, M.: Coverings of the rational double points in characteristicp. In: Baily, W.L., jr., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry. Iwanami Shoten, Publ., Cambridge Univ. Press 1977
Bardsley, P., Richardson, R.W.: Étale slices for algebraic transformation groups in characteristicp. Proc. Lond. Math. Soc.51, 295–317 (1985)
Borel, A., Carter, R., Curtis, C.W., Iwahori, N., Springer, T.A., Steinberg, R.: Seminar on algebraicgroups and related finite groups. (Lect. Notes Math. Vol. 131) Berlin Heidelberg New York: Springer 1970
Borel, A., Siebenthal, J. de: Les sous-groupes fermésde rang maximum des groupes de Lie clos. Comm. Math. Helv.23, 200–221 (1949)
Bourbaki, N.: Groupes et algébres des Lie. Chap. 4, 5, 6: Masson: Paris 1981; Chap. 7, 8: Diffusion C.C.L.S.: Paris 1975
Brieskorn, E.: Singular elements of semisimple algebraic groups. In: Actes Congrès Int. Math.2, 279–284 (1970)
Dieudonné, J.: La géométrie des groupes classiques. 2. ed. Berlin Göttingen Heidelberg: Springer 1963
Durfee, A.H.: Fifteen characterisations of rational double points and simple critical points. Eins. Math., II. Ser.25, 132–163 (1979)
Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. A.M.S. Transl. Ser. 26, 111–245 (1957)
Hesselink, W.H.: Nilpotency in classical groups over a field of characteristic 2. Math. Z.166, 165–181 (1979)
Holt, D.F., Spaltenstein, N.: Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic. J. Aust. Math. Soc.38, 330–350 (1985)
Jacobs, K.: Einführung in die Kombinatorik. Berlin: de Gruyter 1983
Kempf. G.: Linear systems on homogeneous spaces Ann. Math.103, 557–591 (1976)
Saito, K.: Einfach-elliptische Singularitäten. Invent. math.23, 289–325 (1974)
Slodowy, P.: Simple singularities and simple algebraic groups. (Lect. Notes Math. Vol. 815) Berlin Heidelberg New York: Springer 1980
Springer, T.A.: Some arithmetical results on semi-simple Lie algebras. Publ. math. IHES30, 115–142 (1966)
Steinberg, R.: Conjugacy classes in algebraic groups. (Lect. Notes Math. Vol. 366) Berlin Heidelberg New York: Springer 1974
Author information
Authors and Affiliations
Mathematisches Institut, Rheinsprung 21, CH-4051, Basel
Friedrich Knop
Authors
- Friedrich Knop
You can also search for this author inPubMed Google Scholar
Additional information
Unterstützt durch den Schweizerischen Nationalfonds
Rights and permissions
About this article
Cite this article
Knop, F. Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten. Invent Math 90, 579–604 (1987). https://doi.org/10.1007/BF01389179
Issue Date: October 1987
DOI: https://doi.org/10.1007/BF01389179