link.springer.com

The ubiquitin-proteasome system - Journal of Biosciences

  • ️Chandu, Dilip
  • ️Wed Mar 01 2006
  • Adams J 2003 Potential for proteasome inhibition in the treatment of cancer;Drug Discovery Today 8 307–315

    Article  CAS  PubMed  Google Scholar 

  • Adrain C, Creagh E M, Cullen S P and Martin S J 2004 Caspasedependent inactivation of proteasome function during programmed cell death inDrosophila and man;J. Biol. Chem. 279 36923–36930

    Article  CAS  Google Scholar 

  • Apcher G S, Heink S, Zantopf D, Kloetzel P M, Schmid H P, Mayer R J and Kruger E 2003 Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits;FEBSLett. 553 200–204

    Article  CAS  Google Scholar 

  • Arendt C S and Hochstrasser M 1999 Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly;EMBO J. 18 3575–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo A P, Tanaka K, Goldberg A L and Welch W J 1988 Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome);Nature (London) 331 192–204

    Article  CAS  Google Scholar 

  • Arthur J S, Elce J S, Hegadorn C, Williams K and Greer P A 2000 Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division;Mol. Cell. Biol. 20 4474–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton L F, Cruz M, Rangwala R, Deepe G S Jr and Monaco J J 2002 Regulation of immunoproteasome subunit expressionin vivo following pathogenic fungal infection;J. Immunol. 169 3046–3052

    Article  Google Scholar 

  • Barton L F, Runnels H A, Schell T D, Cho Y, Gibbons R, Tevethia S S, Deepe G S Jr and Monaco J J 2004 Immune defects in 28-kDa proteasome activator gamma-deficient mice;J. Immunol. 172 3948–3954.

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N and Goldberg A L 2000 PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone;Nat. Cell. Biol. 2 833–839

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N, Zwickl P, Seemuller E, Baumeister W and Goldberg A L 2003 ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation;Mol. Cell 11 69–78

    Article  CAS  PubMed  Google Scholar 

  • Berndt C, Bech-Otschir D, Dubiel W and Seeger M 2002 Ubiquitin System: JAMMing in the Name of the Lid;Curr. Biol. 12 R815-R817

    Article  CAS  PubMed  Google Scholar 

  • Brown M S, Ye J, Rawson R B and Goldstein J L 2000 Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans;Cell 100 391–398

    Article  CAS  PubMed  Google Scholar 

  • Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J and Levy F 2000 Identification and characterization of a mammalian protein interacting with 20S proteasome precursors;Proc. Natl. Acad. Sci. USA 97 10348–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardozo T and Pagano M 2004 The SCF ubiquitin ligase: insights into a molecular machine;Nat. Rev. Mol. Cell. Biol. 5 739–751

    Article  CAS  PubMed  Google Scholar 

  • Chu-Ping M, Slaughter C A and Demartino G N 1992 Purification and characterization of a protein inhibitor of the 20S proteasome (macropain);Biochem. Biophys. Acta 1119 303–311

    Google Scholar 

  • Chandu D and Nandi D 2002 From proteins to peptides to amino acids: comparative genomics of enzymes involved in downstream events during cytosolic protein degradation;Appl. Genom. Proteom. 4 235–252

    Google Scholar 

  • Chandu D and Nandi D 2004 Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation;Res. Microbiol. 155 710–719

    Article  CAS  PubMed  Google Scholar 

  • Chen P and Hochstrasser M 1996 Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly;Cell 86 961–972

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Hod Y and Hershko A 1978 A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes;Biochem. Biophys. Res. Commun. 81 1100–1105

    Article  Google Scholar 

  • Ciechanover A, Finley D and Varshavsky A 1984 Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85;Cell 37 57–66

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A and Ben-Saadon R 2004 N-terminal ubiquitination: more protein substrates join in;Trends Cell Biol. 14 103–106

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A and Iwai K 2004 The ubiquitin system: from basic mechanisms to the patient bed;IUBMB Life 56 193–201

    Article  CAS  PubMed  Google Scholar 

  • Cuervo A M, Palmer A, Rivett A J and Knecht E 1995 Degradation of proteasomes by lysosomes in rat liver;Eur. J. Biochem. 227 792–800

    Article  CAS  PubMed  Google Scholar 

  • Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R and Baumeister W 1989 The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria;FEBS Lett. 251 125–131

    Article  CAS  PubMed  Google Scholar 

  • Darwin K H, Ehrt S, Gutierrez-Ramos J C, Weich N and Nathan C F 2003 The proteasome ofMycobacterium tuberculosis is required for resistance to nitric oxide;Science 302 1963–1966

    Article  CAS  PubMed  Google Scholar 

  • Darwin K H, Lin G, Chen Z, Li H and Nathan C F 2005 Characterization of aMycobacterium tuberculosis proteasomal ATPase homologue;Mol. Microbiol. 55 561–571

    Article  CAS  PubMed  Google Scholar 

  • De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A and Griffin T A 2003 Beta 2 subunit propeptides influence cooperative proteasome assembly;J. Biol. Chem. 278 6153–6159

    Article  CAS  PubMed  Google Scholar 

  • Dick T P, Ruppert T, Groettrup M, Kloetzel P M, Kuehn L, Koszinowski U H, Stevanovic S, Schild H and Rammensee H G 1996 Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands;Cell 86 253–262

    Article  CAS  PubMed  Google Scholar 

  • Etlinger J D and Goldberg A L 1977 A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes;Proc. Natl. Acad. Sci. USA. 74 54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enenkel C, Lehmann A and Kloetzel P M 1998 Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast;EMBOJ. 17 6144–6154

    Article  CAS  Google Scholar 

  • Elsasser S and Finley D 2005 Delivery of ubiquitinated substrates to protein-unfolding machines;Nat. CellBiol. 7 742–749

    Article  CAS  Google Scholar 

  • Fabunmi R P, Wigley W C, Thomas P J and DeMartino G N 2000 Activity and regulation of the centrosome-associated proteasome;J. Biol. Chem. 275 409–413

    Article  CAS  PubMed  Google Scholar 

  • Fehling H J, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U and von Boehmer H 1994 MHC class I expression in mice lacking the proteasome subunit LMP-7;Science 265 1234–1237

    Article  CAS  PubMed  Google Scholar 

  • Fenteany G, Standaert R F, Lane W S, Choi S, Corey E J and Schreiber S L 1995 Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin;Science 268 726–731

    Article  CAS  PubMed  Google Scholar 

  • Finley D, Ciechanover A and Varshavsky A 1984 Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85;Cell 37 43–55

    Article  CAS  PubMed  Google Scholar 

  • Förster A, Whitby F G and Hill C P 2003 The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation;EMBOJ. 22 4356–4364

    Article  Google Scholar 

  • Förster A, Masters E I, Whitby F G, Robinson H and Hill C P 2005 The 1.9 Å structure of aproteasome-11S activator complex and implications forproteasome-PAN/PA700 interactions;Mol. Cell 18 589–599

    Article  PubMed  CAS  Google Scholar 

  • Frentzel S, Pesold-Hurt B, Seelig A and Kloetzel P M 1994 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes;J. Mol. Biol. 236 975–981

    Article  CAS  PubMed  Google Scholar 

  • Gaczynska M, Osmulski P A, Gao Y, Post M J and Simons M 2003 Proline and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity;Biochemistry 42 8663–8670.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Lecker S, Post M J, Hietaranta A J, Li J, Volk R, Li M, Sato K, Saluja A K, Steer M L, Goldberg A L and Simons M 2000 Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide;J. Clin. Invest. 106 439–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman M H, Rubin D M, Fried V A and Finley D 1998 The regulatory particle of theSaccharomyces cerevisiae proteasome;Mol. Cell. Biol. 18 3149–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein J L 2004 Towering science: an ounce of creativity is worth a ton of impact;Nat. Med. 10 1015–1016

    Article  CAS  PubMed  Google Scholar 

  • Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J and Colbert R A 1998 Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits;J. Exp. Med. 187 97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin T A, Slack J P, McCluskey T S, Monaco J J and Colbert R A 2000 Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly;Mol. Cell. Biol. Res. Commun. 3 212–217

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik H D and Huber R 1997 Structure of 20S Proteasome from yeast at 2.4Å resolution;Nature (London) 386 463–470

    Article  CAS  Google Scholar 

  • Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H and Huber R 1999 The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study;Proc. Natl. Acad. Sci. USA 96 10976–10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groll M, Kim K B, Kairies N, Huber R and Crews C M 2000 Crystal structure of epoxomicin: 20S proteasome reveals a molecular bassifor selectivity of alpha ‘beta’ —epoxyketone proteasome inhibitors;J. Am. Chem. Soc. 122 1237–1238

    Article  CAS  Google Scholar 

  • Groll M and Huber R 2004 Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach;Biochim. Biophys. Acta 1695 33–44

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Jung T, Merker K and Davies K J 2004 Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease;Int. J. Biochem. Cell. Biol. 36 2519–2530

    Article  CAS  PubMed  Google Scholar 

  • Grziwa A, Maack S, Puhler G, Wiegand G, Baumeister W and Jaenicke R 1994 Dissociation and reconstitution of the Thermoplasma proteasome;Eur. J. Biochem. 223 1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Guo G G, Gu M and Etlinger J D 1994 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase;J. Biol. Chem. 269 12399–12402

    PubMed  Google Scholar 

  • Harbers K, Muller U, Grams A, Li E, Jaenisch R and Franz T 1996 Provirus integration into a gene encoding a ubiquitin-conjugating enzyme results in a placental defect and embryonic lethality;Proc. Natl. Acad. Sci. USA 93 12412–12417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris J L, Alper P B, Li J, Rechsteiner M and Backes B J 2001 Substrate specificity of the human proteasome;Chem. Biol. 8 1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Heink S, Ludwig D, Kloetzel P and Kruger E 2005 IFNγ-induced immune adaptation of the proteasome system is an accelerated and transient response;Proc. Natl. Acad. Sci. USA. 102 9241–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendil K B, Khan S and Tanaka K 1998 Simultaneous binding of PA28 and PA700 activators to 20S proteasomes;Biochem. J. 332 749–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A and Rose I A 1979 Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP;Proc. Natl. Acad. Sci. USA 76 3107–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A, Heller H, Haas A L and Rose I A 1980 Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis;Proc. Natl. Acad. Sci. USA 77 1783–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A and Rose I A 1981 Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown;J. Biol. Chem. 256 1525–1528

    CAS  PubMed  Google Scholar 

  • Hershko A, Eytan E, Ciechanover A and Haas A L 1982 Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins;J. Biol. Chem. 257 13964–13970

    CAS  PubMed  Google Scholar 

  • Hershko A, Heller H, Elias S and Ciechanover A 1983 Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown;J. Biol. Chem 258 8206–8214

    CAS  PubMed  Google Scholar 

  • Hershko A, Helen H, Eytane and Ressy 1986 The Protein substrate binding site of the Ubiquitin-Protein ligase system;J. Biol. Chem. 261 11982–11989

    Google Scholar 

  • Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen L H, Luca F C, Ruderman J V and Eytan E 1994 Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2;J. Biol. Chem. 269 4940–4946

    CAS  PubMed  Google Scholar 

  • Heinemeyer W, Fischer M, Krimmer T, Stachon U and Wolf D H 1997 The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing;J. Biol. Chem. 272 25200–25209

    Article  CAS  PubMed  Google Scholar 

  • Hicke L 2001 Protein regulation by monoubiquitin;Nat. Rev. Mol. Cell. Biol. 2 195–201

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K and Murata S 2005 A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes;Nature (London) 437 1381–1385

    Article  CAS  Google Scholar 

  • Hoffman L, Pratt G and Rechsteiner M 1992 Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate;J. Biol. Chem. 267 22362–22368

    CAS  PubMed  Google Scholar 

  • Hoppe T 2005 Multiubiquitylation by E4 enzymes: ‘one size’ doesn't fit all;Trends Biochem. Sci. 30 183–187

    Article  CAS  PubMed  Google Scholar 

  • Hough R, Pratt G and Rechsteiner M 1986 Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates;j. Biol. Chem. 261 2400–2408

    CAS  PubMed  Google Scholar 

  • Hu Z, Zhang Z, Doo E, Coux O, Goldberg A L and Liang T J 1999 Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex;J. Virol. 73 7231–7240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jager S, Groll M, Huber R, Wolf D H and Heinemeyer W 1999 Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function;J. Mol. Biol. 291 997–1013

    Article  CAS  PubMed  Google Scholar 

  • Johnston J A, Ward C L and Kopito R R 1998 Aggresomes: a cellular response to misfolded proteins;J. Cell. Biol. 143 1883–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M and Ben-Neriah Y 2000 Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity;Annu. Rev. Immunol. 18 621–663

    Article  CAS  PubMed  Google Scholar 

  • Khan S, van den Broek M, Schwarz K, de Giuli R, Diener P A and Groettrup M 2001 Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver;J. Immunol. 167 6859–6868

    Article  CAS  PubMed  Google Scholar 

  • Kim J H, Park K C, Jung S S, Bang O and Chung C H 2003 Deubiquitinating enzymes as cellular regulators;J. Biochem. 134 9–18

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury D J, Griffin T A and Colbert R A 2000 Novel propeptide function in 20 S proteasome assembly influences beta subunit composition;J. Biol. Chem. 275 24156–24162

    Article  CAS  PubMed  Google Scholar 

  • Kishino T, Lalande M and Wagstaff J. 1997 UBE3A/E6-AP mutations cause Angelman syndrome;Nat. Genet. 15 70–73

    Article  CAS  PubMed  Google Scholar 

  • Kisselev A F, Akopian T N and Goldberg A L 1998 Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes;J. Biol. Chem. 273, 1982–1989

    Article  Google Scholar 

  • Kisselev A F, Akopian T N, Woo K M and Goldberg A L 1999 The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation;J. Biol. Chem. 274 3363–3371

    Article  CAS  PubMed  Google Scholar 

  • Kisselev A F, Songyang Z and Goldberg A L 2000 Why does threonine, and not serine, function as the active site nucleophile in proteasomes?;J. Biol. Chem. 275 14831–14837

    Article  CAS  PubMed  Google Scholar 

  • Kloetzel P M 2004 The proteasome and MHC class I antigen processing;Biochim. Biophys. Acta 1695 225–233

    Article  CAS  Google Scholar 

  • Knipfer N and Shrader T E 1997 Inactivation of the 20S proteasome inMycobacterium smegmatis;Mol. Microbiol. 25 375–383

    Article  CAS  PubMed  Google Scholar 

  • Knowlton J R, Johnston S C, Whitby F G, Realini C, Zhang Z, Rechsteiner M and Hill C P 1997 Structure of the proteasome activator REGalpha (PA28alpha);Nature (London) 390 639–643

    Article  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U and Jentsch S 1999 A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly;Cell 96 635–644

    Article  CAS  PubMed  Google Scholar 

  • Kostova Z and Wolf D H 2003 For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection;EMBOJ. 22 2309–2317

    Article  CAS  Google Scholar 

  • Kruger E, Kloetzel P M and Enenkel C 2001 20S proteasome biogenesis;Biochimie 83 289–293

    Article  CAS  PubMed  Google Scholar 

  • Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H and Finley D 2002 Multiple associated proteins regulate proteasome structure and function;Mol. Cell. 10 495–507

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gao X, Joss L and Rechsteiner M 2000 The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits;J. Mol. Biol. 299 641–654

    Article  CAS  PubMed  Google Scholar 

  • Liu C W, Corboy M J, DeMartino G N and Thomas P J 2003 Endoproteolytic Activity of the Proteasome;Science 299 408–411

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwick P, Baumeister W and Huber R 1995 Crystal structure of the 20S Proteasome from the ArchaeonT. acidophilum at 3.4Å resolution;Science 268 533–539

    Article  CAS  PubMed  Google Scholar 

  • Lupas A, Zwickl P and Baumeister W 1994 Proteasome sequences in eubacteria;Trends Biochem. Sci. 19 533–534

    Article  CAS  PubMed  Google Scholar 

  • Lykke-Andersen K, Schaefer L, Menon S, Deng X W, Miller J B and Wei N 2003 Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death;Mol. Cell Biol. 23 6790–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M and Nakayama K I 2004 Molecular clearance of ataxin-3 is regulated by a mammalian E4;EMBOJ. 23 659–669

    Article  CAS  Google Scholar 

  • McCutchen-Maloney S L, Matsuda K, Shimbara N, Binns D D, Tanaka K, Slaughter C A and DeMartino G N 2000 cDNA cloning, expression, and functional characterization of PI31, a prolinerich inhibitor of the proteasome;J. Biol. Chem. 275 18557–18565

    Article  CAS  PubMed  Google Scholar 

  • McDonough H and Patterson C 2003 CHIP: a link between the chaperone and proteasome systems;Cell Stress Chaperones 8 303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M and Kruger E 2003 Inhibition of proteasome activity induces concerted expression of proteasome genes andde novo formation of mammalian proteasomes;J. Biol. Chem. 278 21517–21525

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Mohan R, Kwok B H, Elofsson M, Sin N and Crews C M 1999 Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity;Proc. Natl. Acad. Sci. USA 96 10403–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaco J J and McDevitt H O 1984 H-2-linked low-molecular weight polypeptide antigens assemble into an unusual macromolecular complex;Nature (London) 309 797–799

    Article  CAS  Google Scholar 

  • Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K and Chiba T 1999 Growth retardation in mice lacking the proteasome activator PA28gamma;J. Biol. Chem. 274 38211–38215

    Article  CAS  PubMed  Google Scholar 

  • Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K and Chiba T 2001 Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta;EMBO J. 20 5898–5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray A W 2004 Recycling the cell cycle: cyclins revisited;Cell 116 221–234

    Article  CAS  PubMed  Google Scholar 

  • Nandi D, Woodward E, Ginsburg D B and Monaco J J 1997 Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits;EMBO J. 16 5363–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi D, Marusina K and Monaco J J 1998 How do endogenous proteins become peptides and reach the endoplasmic reticulum;Curr. Top. Microbiol. Immunol. 232 15–47

    CAS  PubMed  Google Scholar 

  • Niedermann G, Grimm R, Geier E, Maurer M, Realini C, Gartmann C, Soll J, Omura S, Rechsteiner M C, Baumeister W and Eichmann K 1997 Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system;J. Exp. Med. 186 209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Hwang Y P, Lee J S, Seo S H, Yoon S K and Yoon J B 2005 Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases;Mol. Cell. Biol. 25 3842–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickart C M 2001 Mechanisms underlying ubiquitination;Annu. Rev. Biochem. 70 503–533

    Article  CAS  PubMed  Google Scholar 

  • Pickart C M and Cohen R E 2004 Proteasomes and their kin: proteases in the machine age;Nat. Rev. Mol. Cell. Biol. 5 177–187

    Article  CAS  PubMed  Google Scholar 

  • Ping M C, Willy P J, Slaughter C A and DeMartino G N 1993 PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus;J. Biol. Chem. 268 22514–22519

    Google Scholar 

  • Rajkumar S V, Richardson P G, Hideshima T and Anderson K C 2005 Proteasome inhibition as a novel therapeutic target in human cancer;J. Clin. Oncol. 23 630–639

    Article  CAS  PubMed  Google Scholar 

  • Ramos P C, Hockendorff J, Johnson E S, Varshavsky A and Dohmen R J 1998 Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly;Cell 92 489–499

    Article  CAS  PubMed  Google Scholar 

  • Rao H, Uhlmann F, Nasmyth K and Varshavsky A 2001 Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability;Nature (London) 410 955–959

    Article  CAS  Google Scholar 

  • Rechsteiner M and Hill C P 2005 Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors;Trends Cell. Biol. 15 7–33

    Article  CAS  Google Scholar 

  • Reits E A, Benham A M, Plougastel B, Neefjes J and Trowsdale J 1997 Dynamics of proteasome distribution in living cells;EMBO J. 16 6087–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N, Sorimachi H, Lefranc G, Fardeau M, Sebille A and Beckmann J S 2000 Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice;J. Cell. Biol. 151 1583–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock K L, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg A L 1994 Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules;Cell 78 761–771

    Article  CAS  PubMed  Google Scholar 

  • Ruepp A, Eckerskorn C, Bogyo M and Baumeister W 1998 Proteasome function is dispensable under normal but not under heat shock conditions inThermoplasma acidophilum;FEBS Lett. 425 87–90

    Article  CAS  PubMed  Google Scholar 

  • Sassetti C M, Boyd D H and Rubin E J 2003 Genes required for mycobacterial growth defined by high density mutagenesis;Mol. Microbiol. 48 77–84

    Article  CAS  PubMed  Google Scholar 

  • Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W and Madura K 1998 Rad23 links DNA repair to the ubiquitin/proteasome pathway;Nature (London) 391 715–718

    Article  CAS  Google Scholar 

  • Schmid H P, Akhayat O, Martins De Sa C, Puvion F, Koehler K and Scherrer K 1984 The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins;EMBO J. 3 29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C 2004 The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development;Biochim. Biophys. Acta 1695 45–54

    Article  CAS  Google Scholar 

  • Seemuller E, Lupas A, Stock D, Lowe J, Huber R and Baumeister W 1995 Proteasome fromThermoplasma acidophilum: a threonine protease;Science 268 579–582

    Article  CAS  PubMed  Google Scholar 

  • Semple C A, Riken Ger Group and GSL Members 2003 The comparative proteomics of ubiquitination in mouse;Genome Res. 13 1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soza A, Knuehl C, Groettrup M, Henklein P, Tanaka K and Kloetzel P M 1997 Expression and subcellular localization of mouse 20S proteasome activator complex PA28;FEBS Lett. 413 27–34

    Article  CAS  PubMed  Google Scholar 

  • Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L and Rotin D 1997 Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination;EMBO J. 16 6325–6336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X M, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A and Cohen G M 2004 Caspase activation inhibits proteasome function during apoptosis;Mol. Cell. 14 81–93

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ii K, Ichihara A, Waxman L and Goldberg A L 1986 A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution;J. Biol. Chem. 261 15197–15203

    CAS  PubMed  Google Scholar 

  • Tanaka K, Yoshimura T and Ichihara A 1989 Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl sulfate;J. Biochem. (Tokyo) 106 495–500

    Article  CAS  Google Scholar 

  • Turk V, Turk B and Turk D 2001 Lysosomal cysteine proteases: facts and opportunities;EMBO. J. 20 4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N and Tsukihara T 2002 The structure of the mammalian 20S proteasome at 2.75 Å resolution;Structure (Camb). 10 609–618

    Article  CAS  Google Scholar 

  • Ustrell V, Hoffman L, Pratt G and Rechsteiner M 2002 PA200, a nuclear proteasome activator involved in DNA repair;EMBO J. 21 3516–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Kaer L, Ashton-Rickardt P G, Eichelberger M, Gaczynska M, Nagashima K, Rock K L, Goldberg A L, Doherty P C and Tonegawa S 1994 Altered peptidase and viral-specific T cell response in LMP2 mutant mice;Immunity 1 533–541

    Article  PubMed  Google Scholar 

  • Varshavsky A 2005 Regulated protein degradation;Trends Biochem Sci. 30 283–286

    Article  CAS  PubMed  Google Scholar 

  • Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu E A 2004In vivo activation of the p53 pathway by small-molecule antagonists of MDM2;Science 303 844–848

    Article  CAS  Google Scholar 

  • Velichutina I, Connerly P L, Arendt C S, Li X and Hochstrasser M 2004 Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast;EMBO J. 23 500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J and Deshaies R J 2000 Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes;Mol. Biol. Cell. 11 3425–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma R, Aravind L, Oania R, McDonald W H, Yates J R 3rd, Koonin E V and Deshaies R J 2002 Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome;Science 298 611–615

    Article  CAS  PubMed  Google Scholar 

  • Voges D, Zwickl P and Baumeister W 1999 The 26S proteasome: a molecular machine designed for controlled proteolysis;Annu. Rev. Biochem. 68 1015–10168

    Article  CAS  PubMed  Google Scholar 

  • Wang H R, Kania M, Baumeister W and Nederlof P M 1997 Import of human and Thermoplasma 20S proteasomes into nuclei of HeLA cells requires functional NLS sequences;Eur. J. Cell. Biol. 73 105–113

    CAS  PubMed  Google Scholar 

  • Ward C L, Omura S and Kopito R R 1995 Degradation of CFTR by the ubiquitin-proteasome pathway;Cell 83 121–127

    Article  CAS  PubMed  Google Scholar 

  • Weissman A M 2001 Themes and variations on ubiquitylation;Nat. Rev. Mol. Cell. Biol. 2 169–178

    Article  CAS  PubMed  Google Scholar 

  • Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C and Hill C P 2000 Structural basis for the activation of 20S proteasomes by 11S regulators;Nature (London) 408 115–120

    Article  CAS  Google Scholar 

  • Wigley W C, Fabunmi R P, Lee M G, Marino C R, Muallem S, DeMartino G N and Thomas P J 1999 Dynamic association of proteasomal machinery with the centrosome;J. Cell. Biol. 145 481–490

    Article  Google Scholar 

  • Wilk S and Orlowski M 1983 Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex;J. Neurochem. 40 842–849

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson K D, Urban M K and Haas A L 1980 Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes;J. Biol. Chem. 255 7529–7532

    CAS  PubMed  Google Scholar 

  • Wilkinson C R, Wallace M, Morphew M, Perry P, Allshire R, Javerzat J P, McIntosh J R and Gordon C 1998 Localization of the 26S proteasome during mitosis and meiosis in fission yeast;EMBO. J. 17 6465–6476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M and Kruger E 2000 Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7 (β5i) incorporation into 20S proteasomes;J. Mol. Biol. 30 1–9

    Article  CAS  Google Scholar 

  • Wojcik C and DeMartino G N 2003 Intracellular localization of proteasomes;Int. J. Biochem. Cell. Biol. 35 579–589

    Article  CAS  PubMed  Google Scholar 

  • Yao T and Cohen R E2002 A cryptic protease couples deubiquitination and degradation by the proteasome;Nature (London) 419 403–407

    Article  CAS  Google Scholar 

  • Yen H C, Gordon C and Chang E C 2003Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome;Cell 112 207–217

    Article  CAS  PubMed  Google Scholar 

  • Zaiss D M, Standera S, Holzhutter H, Kloetzel P and Sijts A J 1999 The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes;FEBSLett. 457 333–338

    Article  CAS  Google Scholar 

  • Zaiss D M, Standera S, Kloetzel P M and Sijts A J 2002 PI31 is a modulator of proteasome formation and antigen processing;Proc. Natl. Acad. Sci. USA 99 14344–14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Clawson A and Rechsteiner M 1998a The proteasome activator 11 S regulator or PA28. Contribution By both alpha and beta subunits to proteasome activation;J. Biol. Chem. 273 30660–30668

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Clawson A, Realini C, Jensen C C, Knowlton J R, Hill C P and Rechsteiner M 1998b Identification of an activation region in the proteasome activator REGalpha;Proc. Natl. Acad. Sci. USA 95 2807–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwickl P, Kleinz J and Baumeister W 1994 Critical elements in proteasome assembly;Nat. Struct. Biol. 1 765–770

    Article  CAS  PubMed  Google Scholar 

  • Zwickl P, Ng D, Woo K M, Klenk H P and Goldberg A L 1999 An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes;J. Biol. Chem. 274 26008–26016

    Article  CAS  PubMed  Google Scholar