link.springer.com

Spectral parameters for scattering amplitudes in $ \mathcal{N} $ =4 super Yang-Mills theory - Journal of High Energy Physics

  • ️Staudacher, Matthias
  • ️Fri Jan 17 2014
  • L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual spinor model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  • N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for scattering amplitudes and spectral regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].

    Article  ADS  Google Scholar 

  • R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N =4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in N = 4 SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. Drummond and J. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L.J. Dixon, Scattering amplitudes: the most perfect microscopic structures in the universe, J. Phys. A 44 (2011) 454001 [arXiv:1105.0771] [INSPIRE].

    ADS  Google Scholar 

  • R. Roiban, Review of AdS/CFT integrability, chapter V.1: scattering amplitudesa brief introduction, Lett. Math. Phys. 99 (2012) 455 [arXiv:1012.4001] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • J. Drummond, Review of AdS/CFT integrability, chapter V.2: dual superconformal symmetry, Lett. Math. Phys. 99 (2012) 481 [arXiv:1012.4002] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • L.F. Alday, Review of AdS/CFT integrability, chapter V.3: scattering amplitudes at strong coupling, Lett. Math. Phys. 99 (2012) 507 [arXiv:1012.4003] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Drummond, G. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5× S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 01 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Google Scholar 

  • J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N =4 super Yang-Mills theory, JHEP 05 (2009) 046[arXiv:0902.2987] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 superconformal symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Sever and P. Vieira, Symmetries of the N = 4 SYM S-matrix, arXiv:0908.2437 [INSPIRE].

  • N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-loop superconformal and Yangian symmetries of scattering amplitudes in N = 4 super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Drummond and L. Ferro, Yangians, Grassmannians and T-duality, JHEP 07 (2010) 027 [arXiv:1001.3348] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Drummond and L. Ferro, The Yangian origin of the Grassmannian integral, JHEP 12 (2010) 010 [arXiv:1002.4622] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • G. Korchemsky and E. Sokatchev, Superconformal invariants for scattering amplitudes in N =4 SYM theory, Nucl. Phys. B 839 (2010) 377 [arXiv:1002.4625] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].

  • B.I. Zwiebel, From scattering amplitudes to the dilatation generator in N = 4 SYM, J. Phys. A 45 (2012) 115401 [arXiv:1111.0083] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • L. Faddeev, How algebraic Bethe ansatz works for integrable model, in Relativistic gravitation and gravitational radiation, J.-A. Marck and J.-P. Lasota eds., Cambridge University Press, Cambridge U.K. (1997) [hep-th/9605187] [INSPIRE].

    Google Scholar 

  • L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N =4 super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A.E. Lipstein and L. Mason, From dlogs to dilogs; the super Yang-Mills MHV amplitude revisited, arXiv:1307.1443 [INSPIRE].

  • J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-conformal regularization of infrared loop divergences and the chiral box expansion, arXiv:1303.4734 [INSPIRE].

  • A.P. Hodges, A twistor approach to the regularization of divergences, Proc. Roy. Soc. Lond. A 397 (1985) 341 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A.P. Hodges, Twistor diagrams for all tree amplitudes in gauge theory: a helicity-independent formalism, hep-th/0512336 [INSPIRE].

  • P. Kulish, N.Y. Reshetikhin and E. Sklyanin, Yang-Baxter equation and representation theory. 1, Lett. Math. Phys. 5 (1981) 393 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • V. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [Dokl. Akad. Nauk Ser. Fiz. 283 (1985) 1060] [INSPIRE].

  • V. Drinfel’d, Quantum groups, J. Sov. Math. 41 (1988) 898 [Zap. Nauchn. Semin. 155 (1986) 18] [INSPIRE].

  • V. Drinfeld, A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36 (1988) 212 [INSPIRE].

    MathSciNet  Google Scholar 

  • N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • V.V. Bazhanov, R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Baxter Q-operators and representations of Yangians, Nucl. Phys. B 850 (2011) 148 [arXiv:1010.3699] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].

    Article  MATH  Google Scholar 

  • R. Frassek, N. Kanning, Y. Ko and M. Staudacher, Bethe ansatz for Yangian invariants: towards super Yang-Mills scattering amplitudes, arXiv:1312.1693 [INSPIRE].

  • E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • R.H. Boels, On BCFW shifts of integrands and integrals, JHEP 11 (2010) 113 [arXiv:1008.3101] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Postnikov, Total positivity, Grassmannians and networks, math.CO/0609764 [INSPIRE].

  • S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, math.RT/0104151.

  • L. Dolan, C.R. Nappi and E. Witten, Yangian symmetry in D = 4 superconformal Yang-Mills theory, in Quantum theory and symmetries, P.C. Argyres et al. eds., World Scientific, Singapore (2004) [hep-th/0401243] [INSPIRE].

    Google Scholar 

  • G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • C. Bollini and J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. B 12 (1972) 20 [INSPIRE].

    Google Scholar 

  • J. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim. 4 (1972) 289 [INSPIRE].

    Article  Google Scholar 

  • G. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim. 4 (1972) 329 [INSPIRE].

    Article  Google Scholar 

  • R.K. Ellis and J. Sexton, QCD radiative corrections to parton parton scattering, Nucl. Phys. B 269 (1986) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  • Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • Z. Bern, A. De Freitas, L.J. Dixon and H. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].

    ADS  Google Scholar 

  • W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  • C.G. Bollini, J.J. Giambiagi and A. Gonzales Dominguez, Analytic regularization and the divergences of quantum field theories, Nuovo Cim. 31 (1964) 550.

    Article  Google Scholar 

  • E.R. Speer, Generalized Feynman amplitudes, J. Math. Phys. 9 (1968) 1404.

    Article  ADS  Google Scholar 

  • L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].

    MathSciNet  Google Scholar 

  • A. Sever, P. Vieira and T. Wang, From polygon Wilson loops to spin chains and back, JHEP 12 (2012) 065 [arXiv:1208.0841] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix at finite coupling, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].

    Article  ADS  Google Scholar 

  • B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, arXiv:1306.2058 [INSPIRE].

  • B. Keller, Cluster algebras, quiver representations and triangulated categories, arXiv:0807.1960.

  • J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, arXiv:1305.1617 [INSPIRE].