link.springer.com

On the local frame in nonlinear higher-spin equations - Journal of High Energy Physics

  • ️Vasiliev, M. A.
  • ️Mon Jan 15 2018
  • M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M.A. Vasiliev, Higher-spin theory and space-time metamorphoses, Lect. Notes Phys. 892 (2015) 227 [arXiv:1404.1948] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • M.A. Vasiliev, Star-product functions in higher-spin theory and locality, JHEP 06 (2015) 031 [arXiv:1502.02271] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • N. Boulanger, P. Kessel, E.D. Skvortsov and M. Taronna, Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal, J. Phys. A 49 (2016) 095402 [arXiv:1508.04139] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  • X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS interactions in higher-spin gravity from conformal field theory, JHEP 11 (2015) 149 [arXiv:1508.04292] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • E.D. Skvortsov and M. Taronna, On locality, holography and unfolding, JHEP 11 (2015) 044 [arXiv:1508.04764] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M.A. Vasiliev, Current interactions and holography from the 0-form sector of nonlinear higher-spin equations, JHEP 10 (2017) 111 [arXiv:1605.02662] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • M. Taronna, A note on field redefinitions and higher-spin equations, J. Phys. A 50 (2017) 075401 [arXiv:1607.04718] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  • O.A. Gelfond and M.A. Vasiliev, Unfolded equations for current interactions of 4D massless fields as a free system in mixed dimensions, J. Exp. Theor. Phys. 120 (2015) 484 [arXiv:1012.3143] [INSPIRE].

    Article  ADS  Google Scholar 

  • O.A. Gelfond and M.A. Vasiliev, Current interactions from the one-form sector of nonlinear higher-spin equations, arXiv:1706.03718 [INSPIRE].

  • V.E. Didenko and M.A. Vasiliev, Test of the local form of higher-spin equations via AdS/CFT, Phys. Lett. B 775 (2017) 352 [arXiv:1705.03440] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • E. Sezgin, E.D. Skvortsov and Y. Zhu, Chern-Simons matter theories and higher spin gravity, JHEP 07 (2017) 133 [arXiv:1705.03197] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  • M.A. Vasiliev, work in progress.

  • C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  • C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space (elementary particles in a curved space) 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  • J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  • J. Fang and C. Fronsdal, Massless, half integer spin fields in de Sitter space, Phys. Rev. D 22 (1980) 1361 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  • M.A. Vasiliev, ‘Gauge’ form of description of massless fields with arbitrary spin (in Russian), Yad. Fiz. 32 (1980) 855 [Sov. J. Nucl. Phys. 32 (1980) 439] [INSPIRE].

  • M.A. Vasiliev, Free massless fields of arbitrary spin in the de Sitter space and initial data for a higher spin superalgebra, Fortsch. Phys. 35 (1987) 741 [Yad. Fiz. 45 (1987) 1784] [INSPIRE].

  • M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys. 190 (1989) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  • M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  • C. Sleight and M. Taronna, Higher spin gauge theories and bulk locality: a no-go result, arXiv:1704.07859 [INSPIRE].

  • R.R. Metsaev, Poincaré invariant dynamics of massless higher spins: fourth order analysis on mass shell, Mod. Phys. Lett. A 6 (1991) 359 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  • N. Misuna, On current contribution to Fronsdal equations, arXiv:1706.04605 [INSPIRE].

  • O.A. Gelfond and M.A. Vasiliev, Symmetries of higher-spin current interactions in four dimensions, Theor. Math. Phys. 187 (2016) 797 [Teor. Mat. Fiz. 187 (2016) 401] [arXiv:1510.03488] [INSPIRE].

  • V.E. Didenko and M.A. Vasiliev, Static BPS black hole in 4D higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [Erratum ibid. B 722 (2013) 389] [arXiv:0906.3898] [INSPIRE].