link.springer.com

Deformed twistors and higher spin conformal (super-)algebras in four dimensions - Journal of High Energy Physics

  • ️Günaydin, Murat
  • ️Thu Mar 05 2015
  • A. Joseph, Minimal realizations and spectrum generating algebras, Commun. Math. Phys. 36 (1974) 325 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D.A. Vogan Jr., Singular unitary representations, in Noncommutative harmonic analysis and Lie groups, Lecture Notes Math. 880 (1980) 506.

  • B. Kostant, The vanishing of scalar curvature and the minimal representation of SO(4, 4), in Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progr. Math. 92 (1990) 85.

  • B. Binegar and R. Zierau, Unitarization of a singular representation of so(p, q), Commun. Math. Phys. 138 (1991) 245.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • D. Kazhdan and G. Savin, The smallest representation of simply laced groups, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc. 2 (1990) 209.

  • R. Brylinski and B. Kostant, Lagrangian models of minimal representations of E 6 , E 7 and E 8, in Functional analysis on the eve of the 21st century, Progr. Math. 131 (1993) 13.

  • R. Brylinski and B. Kostant, Minimal representations, geometric quantization, and unitarity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994) 6026.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • B.H. Gross and N.R. Wallach, A distinguished family of unitary representations for the exceptional groups of real rank = 4, in Lie theory and geometry, Progr. Math. 123 (1994) 289.

  • J.-S. Li, Minimal representations & reductive dual pairs, in Representation theory of Lie groups, IAS/Park City Math. Ser. 8 (2000) 293.

  • T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q). I. Realization via conformal geometry, Adv. Math. 180 (2003) 486.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q). II. Branching laws, Adv. Math. 180 (2003) 513.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q). III. Ultrahyperbolic equations on R p−1,q−1, Adv. Math. 180 (2003) 551.

    Article  MATH  MathSciNet  Google Scholar 

  • A.R. Gover and A. Waldron, The so(d+2,2) Minimal Representation and Ambient Tractors: the Conformal Geometry of Momentum Space, Adv. Theor. Math. Phys. 13 (2009) [arXiv:0903.1394] [INSPIRE].

  • D. Kazhdan, B. Pioline and A. Waldron, Minimal representations, spherical vectors and exceptional theta series, Commun. Math. Phys. 226 (2002) 1 [hep-th/0107222] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • M. Günaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57 [hep-th/0008063] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • M. Günaydin and O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups, JHEP 08 (2005) 101 [hep-th/0506010] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Günaydin, K. Koepsell and H. Nicolai, The Minimal unitary representation of E(8(8)), Adv. Theor. Math. Phys. 5 (2002) 923 [hep-th/0109005] [INSPIRE].

    Google Scholar 

  • M. Günaydin, G. Sierra and P.K. Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B 133 (1983) 72 [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Günaydin and O. Pavlyk, Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups, JHEP 01 (2005) 019 [hep-th/0409272] [INSPIRE].

    Article  Google Scholar 

  • M. Günaydin and O. Pavlyk, A Unified Approach to the Minimal Unitary Realizations of Noncompact Groups and Supergroups, JHEP 09 (2006) 050 [hep-th/0604077] [INSPIRE].

    Article  Google Scholar 

  • S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Fernando and M. Günaydin, Minimal unitary representation of SO*(8) = SO(6,2) and its SU(2) deformations as massless 6D conformal fields and their supersymmetric extensions, Nucl. Phys. B 841 (2010) 339 [arXiv:1005.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  • S. Fernando and M. Günaydin, SU(2) deformations of the minimal unitary representation of OSp(8*|2N) as massless 6D conformal supermultiplets, Nucl. Phys. B 843 (2011) 784 [arXiv:1008.0702] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Günaydin and N. Marcus, The Spectrum of the S 5 Compactification of the Chiral N = 2, D = 10 Supergravity and the Unitary Supermultiplets of U(2, 2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].

    Article  MATH  Google Scholar 

  • M. Günaydin, D. Minic and M. Zagermann, 4 − D doubleton conformal theories, CPT and IIB string on AdS 5 × S 5, Nucl. Phys. B 534 (1998) 96 [Erratum ibid. B 538 (1999) 531] [hep-th/9806042] [INSPIRE].

  • M. Günaydin, D. Minic and M. Zagermann, Novel supermultiplets of SU(2, 2|4) and the AdS 5 /CFT 4 duality, Nucl. Phys. B 544 (1999) 737 [hep-th/9810226] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Günaydin, P. van Nieuwenhuizen and N.P. Warner, General Construction of the Unitary Representations of Anti-de Sitter Superalgebras and the Spectrum of the S 4 Compactification of Eleven-dimensional Supergravity, Nucl. Phys. B 255 (1985) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  • P.A.M. Dirac, A Remarkable representation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • M. Gunaydin and C. Saclioglu, Oscillator Like Unitary Representations of Noncompact Groups With a Jordan Structure and the Noncompact Groups of Supergravity, Commun. Math. Phys. 87 (1982) 159.

    Article  ADS  MathSciNet  Google Scholar 

  • I. Bars and M. Gunaydin, Unitary Representations of Noncompact Supergroups, Commun. Math. Phys. 91 (1983) 31.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • M. Gunaydin, Oscillator-Like Unitary Representations Of Non-Compact Groups And Supergroups And Extended Supergravity Theories, Lect. Notes Phys. 180 (1983) 192.

    Article  ADS  Google Scholar 

  • M. Gunaydin, Oscillator-Like Unitary Representations Of Non-Compact Groups And Supergroups And Extended Supergravity Theories, LPTENS-83-5,C82-08-23.1 (1983).

  • C. Fronsdal, The Dirac Supermultiplet, Phys. Rev. D 26 (1982) 1988 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • M. Günaydin and S.J. Hyun, Unitary Lowest Weight Representations of the Noncompact Supergroup Osp(2n|2m, R), J. Math. Phys. 29 (1988) 2367 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • H. Nicolai and E. Sezgin, Singleton Representations of Osp(N ,4), Phys. Lett. B 143 (1984) 389 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Günaydin and N.P. Warner, Unitary Supermultiplets of OSp(8/4,r) and the Spectrum of the S 7 Compactification of Eleven-dimensional Supergravity, Nucl. Phys. B 272 (1986) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  • J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  • E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  • S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Flato and C. Fronsdal, One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Flato and C. Fronsdal, Quantum Field Theory of Singletons: The Rac, J. Math. Phys. 22 (1981) 1100 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Flato and C. Fronsdal, Quantum Field Theory of Singletons: The Rac, J. Math. Phys. 22 (1981) 1100 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Angelopoulos, M. Flato, C. Fronsdal and D. Sternheimer, Massless Particles, Conformal Group and de Sitter Universe, Phys. Rev. D 23 (1981) 1278 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S.E. Konshtein and M.A. Vasiliev, Massless Representations and Admissibility Condition for Higher Spin Superalgebras, Nucl. Phys. B 312 (1989) 402 [INSPIRE].

    Article  ADS  Google Scholar 

  • M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].

  • X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  • C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New Exact Solutions, arXiv:0807.0406 [INSPIRE].

  • A. Sagnotti, Notes on Strings and Higher Spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • M. Gunaydin, Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras, invited talk in Proceedings of Trieste Conf. on Supermembranes and Physics in (2+1)-Dimensions, Trieste, Italy, Jul 17-21 (1989), ed. by M.J. Duff et al., World Scientific, Singapore (1990), pg. 442-456.

  • E. Fradkin and V.Y. Linetsky, Conformal superalgebras of higher spins, Mod. Phys. Lett. A 4 (1989) 2363.

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, Doubletons and 5 − D higher spin gauge theory, JHEP 09 (2001) 036 [hep-th/0105001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, 7 − D bosonic higher spin theory: Symmetry algebra and linearized constraints, Nucl. Phys. B 634 (2002) 120 [hep-th/0112100] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, Towards massless higher spin extension of D = 5, N = 8 gauged supergravity, JHEP 09 (2001) 025 [hep-th/0107186] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  • S. Fernando, M. Günaydin and S. Takemae, Supercoherent states of OSp(8*|2N), conformal superfields and the AdS 7 /CFT 6 duality, Nucl. Phys. B 628 (2002) 79 [hep-th/0106161] [INSPIRE].

    Article  ADS  Google Scholar 

  • M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].

  • M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  • A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup.(4) 9 (1976) 1.

  • K. Govil and M. Günaydin, Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Six Dimensions, JHEP 07 (2014) 004 [arXiv:1401.6930] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Chiodaroli, M. Günaydin and R. Roiban, Superconformal symmetry and maximal supergravity in various dimensions, JHEP 03 (2012) 093 [arXiv:1108.3085] [INSPIRE].

    Article  ADS  Google Scholar 

  • W. Heidenreich, Tensor Products of Positive Energy Representations of SO(3,2) and SO(4,2), J. Math. Phys. 22 (1981) 1566 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • M. Eastwood, P. Somberg and V. Soucek, The uniqueness of the joseph ideal for the classical groups, math/0512296.

  • M. Eastwood, The cartan product, Bull. Belgian Math. Soc.-Simon Stevin 11 (2005) 641.

    MathSciNet  Google Scholar 

  • S. Weinberg, The quantum theory of fields, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  • W. Siegel, Fields, hep-th/9912205 [INSPIRE].

  • L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for Scattering Amplitudes and Spectral Regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Eastwood, P. Somberg, and V. Souček, Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras, J. Geom. Phys. 57 (2007) 2539.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S.E. Konstein, M.A. Vasiliev and V.N. Zaikin, Conformal higher spin currents in any dimension and AdS/CFT correspondence, JHEP 12 (2000) 018 [hep-th/0010239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5, Nucl. Phys. B 616 (2001) 106 [Erratum ibid. B 652 (2003) 407] [hep-th/0106200] [INSPIRE].

  • E. Sezgin and P. Sundell, Higher spin N = 8 supergravity, JHEP 11 (1998) 016 [hep-th/9805125] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • I. Bars, Supergroups and Their Representations, Lectures Appl.Math. 21 (1983) 17.

    MathSciNet  Google Scholar 

  • I. Bars, B. Morel and H. Ruegg, Kac-dynkin Diagrams and Supertableaux, J. Math. Phys. 24 (1983) 2253 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Witten, Spacetime reconstruction, Talk at JHS (2001), http://quark.caltech.edu/jhs60/program.html.

  • I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • S. Fedoruk, E. Ivanov and O. Lechtenfeld, New D(2,1,alpha) Mechanics with Spin Variables, JHEP 04 (2010) 129 [arXiv:0912.3508] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Günaydin, Harmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups, JHEP 05 (2007) 049 [hep-th/0702046] [INSPIRE].

    Article  Google Scholar 

  • K. Govil and M. Günaydin, Minimal unitary representation of D(2,1:λ) and its SU(2) deformations and D = 1, N = 4 superconformal models, Nucl. Phys. B 869 (2013) 111 [arXiv:1209.0233] [INSPIRE].

    Article  ADS  Google Scholar 

  • L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral Parameters for Scattering Amplitudes in N = 4 Super Yang-Mills Theory, JHEP 01 (2014) 094 [arXiv:1308.3494] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • H. Samtleben and R. Wimmer, N=8 Superspace Constraints for Three-dimensional Gauge Theories, JHEP 02 (2010) 070 [arXiv:0912.1358] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Günaydin, Unitary Highest Weight Representations of Noncompact Supergroups, J. Math. Phys. 29 (1988) 1275 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar