link.springer.com

New D(2, 1; α) mechanics with spin variables - Journal of High Energy Physics

  • ️Lechtenfeld, O.
  • ️Fri Apr 30 2010
  • P. Claus et al., Black holes and superconformal mechanics, Phys. Rev. Lett. 81 (1998) 4553 [hep-th/9804177] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • S. Fedoruk, E. Ivanov and O. Lechtenfeld, Supersymmetric Calogero models by gauging, Phys. Rev. D 79 (2009) 105015 [arXiv:0812.4276] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • F. Delduc and E. Ivanov, Gauging N = 4 supersymmetric mechanics, Nucl. Phys. B 753 (2006) 211 [hep-th/0605211] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • J. Michelson and A. Strominger, The geometry of (super)conformal quantum mechanics, Commun. Math. Phys. 213 (2000) 1 [hep-th/9907191] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • J. Michelson and A. Strominger, Superconformal multi-black hole quantum mechanics, JHEP 09 (1999) 005 [hep-th/9908044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • A. Maloney, M. Spradlin and A. Strominger, Superconformal multi-black hole moduli spaces in four dimensions, JHEP 04 (2002) 003 [hep-th/9911001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on superconformal quantum mechanics and multi- black hole moduli spaces, in Progress in string theory and M-theory, Cargese (1999), pg. 235, [hep-th/9911066] [SPIRES].

  • G. Papadopoulos, Conformal and superconformal mechanics, Class. Quant. Grav. 17 (2000) 3715 [hep-th/0002007] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  • V. de Alfaro, S. Fubini and G. Furlan, Conformal invariance in quantum mechanics, Nuovo Cim. A 34 (1976) 569 [SPIRES].

    Article  ADS  Google Scholar 

  • D.Z. Freedman and P.F. Mende, An exactly solvable N particle system in supersymmetric quantum mechanics, Nucl. Phys. B 344 (1990) 317 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • N. Wyllard, (Super)conformal many-body quantum mechanics with extended supersymmetry, J. Math. Phys. 41 (2000) 2826 [hep-th/9910160] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • L. Brink, T.H. Hansson and M.A. Vasiliev, Explicit solution to the N body Calogero problem, Phys. Lett. B 286 (1992) 109 [hep-th/9206049] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • L. Brink, T.H. Hansson, S. Konstein and M.A. Vasiliev, The Calogero model: anyonic representation, fermionic extension and supersymmetry, Nucl. Phys. B 401 (1993) 591 [hep-th/9302023] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • A. Galajinsky, O. Lechtenfeld and K. Polovnikov, Calogero models and nonlocal conformal transformations, Phys. Lett. B 643 (2006) 221 [hep-th/0607215] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • A. Galajinsky, O. Lechtenfeld and K. Polovnikov, N=4 superconformal Calogero models, JHEP 11 (2007) 008 [arXiv:0708.1075] [SPIRES];

    Article  MathSciNet  ADS  Google Scholar 

  • A. Galajinsky, O. Lechtenfeld and K. Polovnikov, N=4 mechanics, WDVV equations and roots, JHEP 03 (2009) 113 [arXiv:0802.4386] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • S. Fedoruk, E. Ivanov and O. Lechtenfeld, OSp(4|2) superconformal mechanics, JHEP 08 (2009) 081 [arXiv:0905.4951] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • S. Krivonos and O. Lechtenfeld, SU(2) reduction in N = 4 supersymmetric mechanics, Phys. Rev. D 80 (2009) 045019 [arXiv:0906.2469] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • E.A. Ivanov, S.O. Krivonos and V.M. Leviant, Geometric superfield approach to superconformal mechanics, J. Phys. A 22 (1989) 4201 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • E. Ivanov and O. Lechtenfeld, N = 4 supersymmetric mechanics in harmonic superspace, JHEP 09 (2003) 073 [hep-th/0307111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • F. Delduc and E. Ivanov, Gauging N = 4 supersymmetric mechanics. II: (1,4,3) models from the (4,4,0) ones, Nucl. Phys. B 770 (2007) 179 [hep-th/0611247] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • E. Ivanov, S. Krivonos and O. Lechtenfeld, New variant of N = 4 superconformal mechanics, JHEP 03 (2003) 014 [hep-th/0212303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • E. Ivanov, S. Krivonos and O. Lechtenfeld, N = 4, D = 1 supermultiplets from nonlinear realizations of D(2,1:alpha), Class. Quant. Grav. 21 (2004) 1031 [hep-th/0310299] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • L.D. Faddeev and R. Jackiw, Hamiltonian reduction of unconstrained and constrained systems, Phys. Rev. Lett. 60 (1988) 1692 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • G.V. Dunne, R. Jackiw and C.A. Trugenberger, Topological (Chern-Simons) quantum mechanics, Phys. Rev. D 41 (1990) 661 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • R. Floreanini, R. Percacci and E. Sezgin, σ-models with purely Wess-Zumino-Witten actions, Nucl. Phys. B 322 (1989) 255 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • P.S. Howe and P.K. Townsend, Chern-Simons quantum mechanics, Class. Quant. Grav. 7 (1990) 1655 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • A.P. Polychronakos, Integrable systems from gauged matrix models, Phys. Lett. B 266 (1991) 29 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • E. Ivanov, L. Mezincescu and P.K. Townsend, Fuzzy CP(n|m) as a quantum superspace, contribution to Symmetries in Gravity and Field Theory, conference for Jose-Adolfo de Azcarraga’s 60th birthday, Salamanca Spain (2003), [hep-th/0311159] [SPIRES].

  • L. Mezincescu, Super Chern-Simons quantum mechanics, in proceedings of the International Workshop “Supersymmetries and Quantum Symmetries” (SQS’03), Dubna, Russia, 24–29 July 2003, [hep-th/0405031] [SPIRES].

  • L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [SPIRES].

  • I.A. Bandos, E. Ivanov, J. Lukierski and D. Sorokin, On the superconformal flatness of AdS superspaces, JHEP 06 (2002) 040 [hep-th/0205104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • T. Hakobyan, S. Krivonos, O. Lechtenfeld and A. Nersessian, Hidden symmetries of integrable conformal mechanical systems, Phys. Lett. A 374 (2010) 801 [arXiv:0908.3290] [SPIRES].

    ADS  Google Scholar 

  • E. Ivanov and J. Niederle, Bi-harmonic superspace for N = 4 mechanics, Phys. Rev. D 80 (2009) 065027 [arXiv:0905.3770] [SPIRES].

    ADS  Google Scholar 

  • J. Van Der Jeugt, Irreducible representations of the exceptional Lie superalgebras D(2, 1α), J. Math. Phys. 26 (1985) 913 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • V. Bargmann, Irreducible unitary representations of the Lorentz group, Annals Math. 48 (1947) 568 [SPIRES].

    Article  MathSciNet  Google Scholar 

  • A.M. Perelomov, Algebraical approach to the solution of one-dimensional model of N interacting particles, Teor. Mat. Fiz. 6 (1971) 364 (in Russian).

    MathSciNet  Google Scholar 

  • J.A. de Azcarraga, J.M. Izquierdo, J.C. Perez Bueno and P.K. Townsend, Superconformal mechanics and nonlinear realizations, Phys. Rev. D 59 (1999) 084015 [hep-th/9810230] [SPIRES].

    ADS  Google Scholar 

  • V.P. Akulov, I.A. Bandos and D.P. Sorokin, Particle in harmonic N = 2 superspace, Sov. J. Nucl. Phys. 47 (1988) 724 [Yad. Fiz. 47 (1988) 1136] [SPIRES].

    MathSciNet  Google Scholar 

  • V.P. Akulov, D.P. Sorokin and I.A. Bandos, Particle mechanics in harmonic superspace, Mod. Phys. Lett. A 3 (1988) 1633 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • E.A. Ivanov, S.O. Krivonos, A.I. Pashnev, Partial supersymmetry breaking in N=4 supersymmetric quantum mechanics, Class. Quant. Grav. 8 (1990) 19.

    Article  MathSciNet  ADS  Google Scholar 

  • J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • A.M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Birkhauser Verlag, Boston U.S.A. (1990), pg. 307 [Nauka Fizmatlit, Russia 1990, pg. 240 (in Russian)].

    Google Scholar 

  • J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • P.K. Townsend, Killing spinors, supersymmetries and rotating intersecting branes, in proceedings of the 22 nd Johns Hopkins Workshop on Novelties of String Theory, Goteborg, Sweden, 20–22 Aug 1998 [hep-th/9901102] [SPIRES].

  • P.K. Townsend, Surprises with angular momentum, Annales Henri Poincaré 4 (2003) S183 [hep-th/0211008] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • G.W. Gibbons and P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138 [hep-th/9809158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  • R. Casalbuoni, On the quantization of systems with anticommutating variables, Nuovo Cim. A 33 (1976) 115 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • R. Casalbuoni, The classical mechanics for Bose-Fermi systems, Nuovo Cim. A 33 (1976) 389 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar