link.springer.com

Model of massless relativistic particle with continuous spin and its twistorial description - Journal of High Energy Physics

  • ️Rusnak, A.
  • ️Thu Jul 05 2018

Abstract

We propose a new world-line Lagrangian model of the D= 4 massless relativistic particle with continuous spin and develop its twistorial formulation. The description uses two Penrose twistors subjected to four first class constraints. After the first quantization of the world-line twistorial model, the wave function is defined by an unconstrained function on the two-dimensional complex affine plane. We find the twistor transform that determines the space-time field of the continuous spin particle through the corresponding twistor one, which plays the role of a prepotential. It is shown that this space-time field is an exact solution of the space-time constraints defining the irreducible massless representation of the Poincaré group with continuous spin.

Article PDF

Similar content being viewed by others

References

  1. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals Math. 40 (1939) 149.

  2. E.P. Wigner, Relativistische Wellengleichungen, Z. Physik 124 (1947) 665.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V. Bargmann and E.P. Wigner, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. US 34 (1948) 211.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. G.J. Iverson and G. Mack, Quantum fields and interactions of massless particlesThe continuous spin case, Annals Phys. 64 (1971) 253.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys. 190 (1989) 59.

    Article  ADS  MathSciNet  Google Scholar 

  6. M.A. Vasiliev, Algebraic aspects of the higher spin problem, Phys. Lett. B 257 (1991) 111 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M.A. Vasiliev, Progress in higher spin gauge theories, in the proceedings of the International Conference dedicated to the memory of Professor Efim Fradkin, June 5–10, Moscow, Russia (2000), hep-th/0104246 [INSPIRE].

  9. M.A. Vasiliev, Relativity, causality, locality, quantization and duality in the S(p)(2M) invariant generalized space-time, in Multiple facets of quantization and supersymmetry, M. Olshanetsky and A. Vainshtein ed., World Scientific (2002), hep-th/0111119 [INSPIRE].

  10. X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in the proceedings of the 1st Solvay Workshop, May 12–14, Brussels, Belgium (2004), hep-th/0503128 [INSPIRE].

  11. M.A. Vasiliev, From Coxeter higher-spin theories to strings and tensor models, arXiv:1804.06520 [INSPIRE].

  12. J. Mund, B. Schroer and J. Yngvason, String localized quantum fields from Wigner representations, Phys. Lett. B 596 (2004) 156 [math-ph/0402043] [INSPIRE].

  13. L. Brink, A.M. Khan, P. Ramond and X.-z. Xiong, Continuous spin representations of the Poincaré and superPoincaré groups, J. Math. Phys. 43 (2002) 6279 [hep-th/0205145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. X. Bekaert and N. Boulanger, The unitary representations of the Poincaré group in any spacetime dimension, talk presented at the 2nd Modave Summer School in Theoretical Physics, August 6–12, Modave, Belgium (2006), hep-th/0611263 [INSPIRE].

  15. X. Bekaert and J. Mourad, The continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Wavefunctions and Soft-Factor Scattering Amplitudes, JHEP 09 (2013) 104 [arXiv:1302.1198] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. P. Schuster and N. Toro, On the theory of continuous-spin particles: helicity correspondence in radiation and forces, JHEP 09 (2013) 105 [arXiv:1302.1577] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. P. Schuster and N. Toro, A Gauge Field Theory of Continuous-Spin Particles, JHEP 10 (2013) 061 [arXiv:1302.3225] [INSPIRE].

  19. P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].

    ADS  Google Scholar 

  20. V.O. Rivelles, Gauge theory formulations for continuous and higher spin fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].

  21. R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].

  23. X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. M.V. Khabarov and Yu. M. Zinoviev, Infinite (continuous) spin fields in the frame-like formalism, Nucl. Phys. B 928 (2018) 182 [arXiv:1711.08223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K.B. Alkalaev and M.A. Grigoriev, Continuous spin fields of mixed-symmetry type, JHEP 03 (2018) 030 [arXiv:1712.02317] [INSPIRE].

  26. I.L. Buchbider and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity, IOP Publishing, Bristol U.K. (1998).

    Google Scholar 

  27. R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Penrose and M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Penrose and W. Rindler, Spinors and space-time. Volume 2: spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge U.K. (1988).

  30. I.A. Bandos and J. Lukierski, Tensorial central charges and new superparticle models with fundamental spinor coordinates, Mod. Phys. Lett. A 14 (1999) 1257 [hep-th/9811022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. I.A. Bandos, J. Lukierski and D.P. Sorokin, Superparticle models with tensorial central charges, Phys. Rev. D 61 (2000) 045002 [hep-th/9904109] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. M.A. Vasiliev, Conformal higher spin symmetries of 4D massless supermultiplets and OSp(L, 2M) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006 [hep-th/0106149] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. S. Fedoruk and E. Ivanov, Master Higher-spin particle, Class. Quant. Grav. 23 (2006) 5195 [hep-th/0604111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. S. Fedoruk and V.G. Zima, Bitwistor formulation of massive spinning particle, J. Kharkov Univ. 585 (2003) 39 [hep-th/0308154] [INSPIRE].

    Google Scholar 

  35. S. Fedoruk et al., Extension of the Shirafuji model for massive particles with spin, Int. J. Mod. Phys. A 21 (2006) 4137 [hep-th/0510266] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. Fedoruk and J. Lukierski, Massive twistor particle with spin generated by Souriau-Wess-Zumino term and its quantization, Phys. Lett. B 733 (2014) 309 [arXiv:1403.4127] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. A.P. Isaev and M.A. Podoinitsyn, Two-spinor description of massive particles and relativistic spin projection operators, Nucl. Phys. B 929 (2018) 452 [arXiv:1712.00833] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. J.A. de Azcarraga, S. Fedoruk, J.M. Izquierdo and J. Lukierski, Two-twistor particle models and free massive higher spin fields, JHEP 04 (2015) 010 [arXiv:1409.7169] [INSPIRE].

    Article  Google Scholar 

  39. I.A. Bandos, Superparticle in Lorentz harmonic superspace (in Russian), Sov. J. Nucl. Phys. 51 (1990) 906 [INSPIRE].

  40. S. Fedoruk and V.G. Zima, Covariant quantization of d = 4 Brink-Schwarz superparticle with Lorentz harmonics, Theor. Math. Phys. 102 (1995) 305 [hep-th/9409117] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  41. I.M. Gelfand, M.I. Graev and N.J. Vilenkin, Generalized Functions: integral geometry and representation theory, Academic Press, New York U.S.A. (1966).

    Google Scholar 

  42. T. Shirafuji, Lagrangian mechanics of massless particles with spin, Prog. Theor. Phys. 70 (1983) 18 [INSPIRE].

  43. A.K.H. Bengtsson, BRST theory for continuous spin, JHEP 10 (2013) 108 [arXiv:1303.3799] [INSPIRE].

    Article  ADS  Google Scholar 

  44. R.R. Metsaev, BRST-BV approach to continuous-spin field, Phys. Lett. B 781 (2018) 568 [arXiv:1803.08421] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. I.L. Buchbinder, V.A. Krykhtin and A. Pashnev, BRST approach to Lagrangian construction for fermionic massless higher spin fields, Nucl. Phys. B 711 (2005) 367 [hep-th/0410215] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. I.L. Buchbinder and V.A. Krykhtin, Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions, Nucl. Phys. B 727 (2005) 537 [hep-th/0505092] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. I.L. Buchbinder, V.A. Krykhtin and H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field, arXiv:1806.01640 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Theoretical Physics, Tomsk State Pedagogical University, Tomsk, 634041, Russia

    I. L. Buchbinder

  2. National Research Tomsk State University, Tomsk, 634050, Russia

    I. L. Buchbinder

  3. Departamento de Física, ICE, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, 36036-900, MG, Brazil

    I. L. Buchbinder

  4. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia

    I. L. Buchbinder, S. Fedoruk & A. P. Isaev

  5. St. Petersburg Department of the Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023, St. Petersburg, Russia

    A. P. Isaev

  6. Department of Physics & Technology, Karazin Kharkov National University, Svobody Sq. 4, UA 61022, Kharkov, Ukraine

    A. Rusnak

Authors

  1. I. L. Buchbinder

    You can also search for this author inPubMed Google Scholar

  2. S. Fedoruk

    You can also search for this author inPubMed Google Scholar

  3. A. P. Isaev

    You can also search for this author inPubMed Google Scholar

  4. A. Rusnak

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to S. Fedoruk.

Additional information

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, I.L., Fedoruk, S., Isaev, A.P. et al. Model of massless relativistic particle with continuous spin and its twistorial description. J. High Energ. Phys. 2018, 31 (2018). https://doi.org/10.1007/JHEP07(2018)031

Download citation

  • Received: 08 June 2018

  • Accepted: 29 June 2018

  • Published: 05 July 2018

  • DOI: https://doi.org/10.1007/JHEP07(2018)031

Keywords