link.springer.com

A note on vectorial AdS5/CFT4 duality for spin-j boundary theory - Journal of High Energy Physics

  • ️Lal, Shailesh
  • ️Fri Dec 16 2016
  • M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • E. Sezgin and P. Sundell, Doubletons and 5D higher spin gauge theory, JHEP 09 (2001) 036 [hep-th/0105001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, Towards massless higher spin extension of D = 5, N = 8 gauged supergravity, JHEP 09 (2001) 025 [hep-th/0107186] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, 7D bosonic higher spin theory: symmetry algebra and linearized constraints, Nucl. Phys. B 634 (2002) 120 [hep-th/0112100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  • I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  • S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • S. Giombi, TASI lectures on the higher spin — CFT duality, arXiv:1607.02967 [INSPIRE].

  • R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990) 1 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Camporesi and A. Higuchi, On the eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].

  • R. Gopakumar, R.K. Gupta and S. Lal, The heat kernel on AdS, JHEP 11 (2011) 010 [arXiv:1103.3627] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • R.K. Gupta and S. Lal, Partition functions for higher-spin theories in AdS, JHEP 07 (2012) 071 [arXiv:1205.1130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Giombi and I.R. Klebanov, One loop tests of higher spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Giombi, I.R. Klebanov and B.R. Safdi, Higher spin AdS d+1 /CFT d at one loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].

    ADS  Google Scholar 

  • S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS d+1 /CFT d , Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].

    ADS  Google Scholar 

  • M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d , Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Beccaria and A.A. Tseytlin, Vectorial AdS 5 /CFT 4 duality for spin-one boundary theory, J. Phys. A 47 (2014) 492001 [arXiv:1410.4457] [INSPIRE].

    MATH  Google Scholar 

  • M. Beccaria and A.A. Tseytlin, Higher spins in AdS 5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Beccaria, G. Macorini and A.A. Tseytlin, Supergravity one-loop corrections on AdS 7 and AdS 3 , higher spins and AdS/CFT, Nucl. Phys. B 892 (2015) 211 [arXiv:1412.0489] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys. A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function relations, J. Phys. A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  • Y. Pang, E. Sezgin and Y. Zhu, One loop tests of supersymmetric higher spin AdS 4 /CFT 3, arXiv:1608.07298 [INSPIRE].

  • M. Günaydin, E.D. Skvortsov and T. Tran, Exceptional F (4) higher-spin theory in AdS 6 at one-loop and other tests of duality, JHEP 11 (2016) 168 [arXiv:1608.07582] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Giombi, I.R. Klebanov and Z.M. Tan, The ABC of higher-spin AdS/CFT, arXiv:1608.07611 [INSPIRE].

  • J.-B. Bae, E. Joung and S. Lal, One-loop test of free SU(N ) adjoint model holography, JHEP 04 (2016) 061 [arXiv:1603.05387] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • J.-B. Bae, E. Joung and S. Lal, On the holography of free Yang-Mills, JHEP 10 (2016) 074 [arXiv:1607.07651] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S.M. Christensen and M.J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • C. Aragone and S. Deser, Consistency problems of hypergravity, Phys. Lett. B 86 (1979) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • G. Barnich, X. Bekaert and M. Grigoriev, Notes on conformal invariance of gauge fields, J. Phys. A 48 (2015) 505402 [arXiv:1506.00595] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  • O. Aharony, M. Berkooz and S.-J. Rey, Rigid holography and six-dimensional N = (2, 0) theories on AdS 5 × S 1, JHEP 03 (2015) 121 [arXiv:1501.02904] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap I: QFT in AdS, arXiv:1607.06109 [INSPIRE].

  • V. Bargmann and E.P. Wigner, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. 34 (1948) 211 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Damour and S. Deser, ‘Geometry’ of spin 3 gauge theories, Ann. Inst. H. Poincaré Phys. Theor. 47 (1987) 277 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  • M. Dubois-Violette and M. Henneaux, Tensor fields of mixed Young symmetry type and N complexes, Commun. Math. Phys. 226 (2002) 393 [math/0110088] [INSPIRE].

  • X. Bekaert and N. Boulanger, On geometric equations and duality for free higher spins, Phys. Lett. B 561 (2003) 183 [hep-th/0301243] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  • J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  • F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit construction of conserved currents for massless fields of arbitrary spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • O.A. Gelfond, E.D. Skvortsov and M.A. Vasiliev, Higher spin conformal currents in Minkowski space, Theor. Math. Phys. 154 (2008) 294 [hep-th/0601106] [INSPIRE].

    Article  MATH  Google Scholar 

  • O.A. Gelfond and M.A. Vasiliev, Higher rank conformal fields in the Sp(2M ) symmetric generalized space-time, Theor. Math. Phys. 145 (2005) 1400 [Teor. Mat. Fiz. 145 (2005) 35] [hep-th/0304020] [INSPIRE].

  • O.A. Gelfond and M.A. Vasiliev, Higher spin fields in Siegel space, currents and theta functions, JHEP 03 (2009) 125 [arXiv:0801.2191] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • L. Brink, R.R. Metsaev and M.A. Vasiliev, How massless are massless fields in AdS d , Nucl. Phys. B 586 (2000) 183 [hep-th/0005136] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].

  • N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: II. Oscillator realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].

  • K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Alkalaev and M. Grigoriev, Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type, Nucl. Phys. B 853 (2011) 663 [arXiv:1105.6111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Joseph, Minimal realizations and spectrum generating algebras, Commun. Math. Phys. 36 (1974) 325 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP 05 (2014) 103 [arXiv:1401.7977] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • C. Fronsdal, Deformation quantization on the closure of minimal coadjoint orbits, Lett. Math. Phys. 88 (2009) 271.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.S. Fradkin and V. Ya. Linetsky, Conformal superalgebras of higher spins, Annals Phys. 198 (1990) 252 [INSPIRE].

  • N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan and S. Theisen, On higher spin symmetries in AdS 5, JHEP 10 (2013) 185 [arXiv:1304.7988] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • K. Govil and M. Günaydin, Deformed twistors and higher spin conformal (super-)algebras in four dimensions, JHEP 03 (2015) 026 [arXiv:1312.2907] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • X. Bekaert and M. Grigoriev, Manifestly conformal descriptions and higher symmetries of bosonic singletons, SIGMA 6 (2010) 038 [arXiv:0907.3195] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  • N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, On the spectrum of AdS/CFT beyond supergravity, JHEP 02 (2004) 001 [hep-th/0310292] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4 SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Joung and K. Mkrtchyan, On mixed-symmetry higher spin algebras, in preparation.

  • M.A. Vasiliev, Conformal higher spin symmetries of 4D massless supermultiplets and osp(L, 2M ) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006 [hep-th/0106149] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G.W. Gibbons and M.J. Perry, Quantizing gravitational instantons, Nucl. Phys. B 146 (1978) 90 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A.A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere, Nucl. Phys. B 877 (2013) 632 [arXiv:1310.1795] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.J. Duff and P. van Nieuwenhuizen, Quantum inequivalence of different field representations, Phys. Lett. B 94 (1980) 179 [INSPIRE].

    Article  ADS  Google Scholar 

  • E.D. Skvortsov and M.A. Vasiliev, Transverse invariant higher spin fields, Phys. Lett. B 664 (2008) 301 [hep-th/0701278] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, JHEP 03 (2013) 168 [arXiv:1206.5877] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Francia, S.L. Lyakhovich and A.A. Sharapov, On the gauge symmetries of Maxwell-like higher-spin Lagrangians, Nucl. Phys. B 881 (2014) 248 [arXiv:1310.8589] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Banerjee, R.K. Gupta and A. Sen, Logarithmic corrections to extremal black hole entropy from quantum entropy function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic corrections to N = 4 and N =8 black hole entropy: a one loop test of quantum gravity, JHEP 11(2011) 143 [arXiv:1106.0080] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, Gen. Rel. Grav. 44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Bhattacharyya, B. Panda and A. Sen, Heat kernel expansion and extremal Kerr-Newmann black hole entropy in Einstein-Maxwell theory, JHEP 08 (2012) 084 [arXiv:1204.4061] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A one-loop test of quantum supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.K. Gupta, S. Lal and S. Thakur, Heat kernels on the AdS 2 cone and logarithmic corrections to extremal black hole entropy, JHEP 03 (2014) 043 [arXiv:1311.6286] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • R.K. Gupta, S. Lal and S. Thakur, Logarithmic corrections to extremal black hole entropy in N = 2, 4 and 8 supergravity, JHEP 11 (2014) 072 [arXiv:1402.2441] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.S. Volkov and A. Wipf, Black hole pair creation in de Sitter space: a complete one loop analysis, Nucl. Phys. B 582 (2000) 313 [hep-th/0003081] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.K. Gupta, Y. Ito and I. Jeon, Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets, JHEP 11 (2015) 197 [arXiv:1504.01700] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J.-B. Bae, E. Joung and S. Lal, in preparation.