link.springer.com

Cubic interaction vertices for massive/massless continuous-spin fields and arbitrary spin fields - Journal of High Energy Physics

  • ️Metsaev, R. R.
  • ️Mon Dec 10 2018
  • X. Bekaert and N. Boulanger, The Unitary representations of the Poincaré group in any spacetime dimension, in 2nd Modave Summer School in Theoretical Physics, Modave, Belgium, August 6–12, 2006 (2006) [hep-th/0611263] [INSPIRE].

  • X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • L. Brink, A.M. Khan, P. Ramond and X.-z. Xiong, Continuous spin representations of the Poincaré and superPoincaré groups, J. Math. Phys. 43 (2002) 6279 [hep-th/0205145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • G.K. Savvidy, Tensionless strings: Physical Fock space and higher spin fields, Int. J. Mod. Phys. A 19 (2004) 3171 [hep-th/0310085] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Mourad, Continuous spin particles from a string theory, hep-th/0504118 [INSPIRE].

  • A. Font, F. Quevedo and S. Theisen, A comment on continuous spin representations of the Poincaré group and perturbative string theory, Fortsch. Phys. 62 (2014) 975 [arXiv:1302.4771] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • X. Bekaert and J. Mourad, The Continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].

    ADS  Google Scholar 

  • X. Bekaert, M. Najafizadeh and M.R. Setare, A gauge field theory of fermionic Continuous-Spin Particles, Phys. Lett. B 760 (2016) 320 [arXiv:1506.00973] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • V.O. Rivelles, Gauge Theory Formulations for Continuous and Higher Spin Fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • V.O. Rivelles, Remarks on a Gauge Theory for Continuous Spin Particles, Eur. Phys. J. C 77 (2017) 433 [arXiv:1607.01316] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • Yu.M. Zinoviev, Infinite spin fields in d = 3 and beyond, Universe 3 (2017) 63 [arXiv:1707.08832] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Najafizadeh, Modified Wigner equations and continuous spin gauge field, Phys. Rev. D 97 (2018) 065009 [arXiv:1708.00827] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • R.R. Metsaev, Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields, JHEP 11 (2017) 197 [arXiv:1709.08596] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • X. Bekaert, J. Mourad and M. Najafizadeh, Continuous-spin field propagator and interaction with matter, JHEP 11 (2017) 113 [arXiv:1710.05788] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.O. Rivelles, A Gauge Field Theory for Continuous Spin Tachyons, arXiv:1807.01812 [INSPIRE].

  • P.A.M. Dirac, Forms of Relativistic Dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.B. Green, J.H. Schwarz and L. Brink, Superfield Theory of Type II Superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M.B. Green and J.H. Schwarz, Superstring Field Theory, Nucl. Phys. B 243 (1984) 475 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic Interaction Terms for Arbitrary Spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  • R.R. Metsaev, S matrix approach to massless higher spins theory. 2: The Case of internal symmetry, Mod. Phys. Lett. A 6 (1991) 2411 [INSPIRE].

  • R.R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, Nucl. Phys. B 859 (2012) 13 [arXiv:0712.3526] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Sleight and M. Taronna, Higher-Spin Algebras, Holography and Flat Space, JHEP 02 (2017) 095 [arXiv:1609.00991] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Ponomarev and E.D. Skvortsov, Light-Front Higher-Spin Theories in Flat Space, J. Phys. A 50 (2017) 095401 [arXiv:1609.04655] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • E.D. Skvortsov, T. Tran and M. Tsulaia, Quantum Chiral Higher Spin Gravity, Phys. Rev. Lett. 121 (2018) 031601 [arXiv:1805.00048] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.R. Metsaev, Eleven dimensional supergravity in light cone gauge, Phys. Rev. D 71 (2005) 085017 [hep-th/0410239] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • S. Ananth, L. Brink and P. Ramond, Eleven-dimensional supergravity in light-cone superspace, JHEP 05 (2005) 003 [hep-th/0501079] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P. Kessel and K. Mkrtchyan, Cubic interactions of massless bosonic fields in three dimensions II: Parity-odd and Chern-Simons vertices, Phys. Rev. D 97 (2018) 106021 [arXiv:1803.02737] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • F.W.J. Olver ed., NIST handbook of mathematical functions — Hardback and CD-ROM, Cambridge University Press (2010).

  • W. Siegel, Introduction to string field theory, Adv. Ser. Math. Phys. 8 (1988) 1 [hep-th/0107094] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • R.R. Metsaev, BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields, Phys. Lett. B 720 (2013) 237 [arXiv:1205.3131] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].

  • R. Manvelyan, K. Mkrtchyan and W. Ruehl, A Generating function for the cubic interactions of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Fotopoulos and M. Tsulaia, On the Tensionless Limit of String theory, Off-Shell Higher Spin Interaction Vertices and BCFW Recursion Relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P. Dempster and M. Tsulaia, On the Structure of Quartic Vertices for Massless Higher Spin Fields on Minkowski Background, Nucl. Phys. B 865 (2012) 353 [arXiv:1203.5597] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.K.H. Bengtsson, BRST Theory for Continuous Spin, JHEP 10 (2013) 108 [arXiv:1303.3799] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.R. Metsaev, BRST-BV approach to continuous-spin field, Phys. Lett. B781 (2018) 568 [arXiv:1803.08421] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • I.L. Buchbinder, V.A. Krykhtin and H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field, Phys. Lett. B 785 (2018) 315 [arXiv:1806.01640] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • X. Bekaert, N. Boulanger and S. Cnockaert, Spin three gauge theory revisited, JHEP 01 (2006) 052 [hep-th/0508048] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M. Henneaux, G. Lucena Gómez and R. Rahman, Higher-Spin Fermionic Gauge Fields and Their Electromagnetic Coupling, JHEP 08 (2012) 093 [arXiv:1206.1048] [INSPIRE].

  • M. Henneaux, G. Lucena Gómez and R. Rahman, Gravitational Interactions of Higher-Spin Fermions, JHEP 01 (2014) 087 [arXiv:1310.5152] [INSPIRE].

  • C. Sleight and M. Taronna, Feynman rules for higher-spin gauge fields on AdS d+1, JHEP 01 (2018) 060 [arXiv:1708.08668] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • R.R. Metsaev, Continuous-spin mixed-symmetry fields in AdS 5, J. Phys. A 51 (2018) 215401 [arXiv:1711.11007] [INSPIRE].

    ADS  MATH  Google Scholar 

  • M.V. Khabarov and Yu.M. Zinoviev, Infinite (continuous) spin fields in the frame-like formalism, Nucl. Phys. B 928 (2018) 182 [arXiv:1711.08223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K.B. Alkalaev and M.A. Grigoriev, Continuous spin fields of mixed-symmetry type, JHEP 03 (2018) 030 [arXiv:1712.02317] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Alkalaev, A. Chekmenev and M. Grigoriev, Unified formulation for helicity and continuous spin fermionic fields, JHEP 11 (2018) 050 [arXiv:1808.09385] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].

  • N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture. II. Oscillator Realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].

  • E.D. Skvortsov, Gauge fields in (A)dS d and Connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].

    ADS  MATH  Google Scholar 

  • E.D. Skvortsov, Gauge fields in (A)dS d within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Reshetnyak, Constrained BRST-BFV Lagrangian formulations for Higher Spin Fields in Minkowski Spaces, arXiv:1803.04678 [INSPIRE].

  • I.L. Buchbinder and A. Reshetnyak, General Lagrangian Formulation for Higher Spin Fields with Arbitrary Index Symmetry. I. Bosonic fields, Nucl. Phys. B 862 (2012) 270 [arXiv:1110.5044] [INSPIRE].

  • C. Burdik and A. Reshetnyak, On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation, J. Phys. Conf. Ser. 343 (2012) 012102 [arXiv:1111.5516] [INSPIRE].

  • A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. I. Bose Fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].

  • E. Joung and K. Mkrtchyan, Weyl Action of Two-Column Mixed-Symmetry Field and Its Factorization Around (A)dS Space, JHEP 06 (2016) 135 [arXiv:1604.05330] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.R. Metsaev, Light-cone gauge cubic interaction vertices for massless fields in AdS 4, Nucl. Phys. B 936 (2018) 320 [arXiv:1807.07542] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • R.R. Metsaev, Mixed-symmetry fields in AdS 5 , conformal fields and AdS/CFT, JHEP 01 (2015) 077 [arXiv:1410.7314] [INSPIRE].

    Article  ADS  Google Scholar 

  • R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Alkalaev, FV-type action for AdS 5 mixed-symmetry fields, JHEP 03 (2011) 031 [arXiv:1011.6109] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.A. Vasiliev, Cubic Vertices for Symmetric Higher-Spin Gauge Fields in (A)dS d, Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • N. Boulanger, E.D. Skvortsov and Yu.M. Zinoviev, Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds, J. Phys. A 44 (2011) 415403 [arXiv:1107.1872] [INSPIRE].

    MATH  Google Scholar 

  • E. Joung and M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach, Nucl. Phys. B 861 (2012) 145 [arXiv:1110.5918] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Joung, L. Lopez and M. Taronna, Generating functions of (partially-)massless higher-spin cubic interactions, JHEP 01 (2013) 168 [arXiv:1211.5912] [INSPIRE].

    Article  ADS  Google Scholar 

  • E. Joung, L. Lopez and M. Taronna, Solving the Noether procedure for cubic interactions of higher spins in (A)dS, J. Phys. A 46 (2013) 214020 [arXiv:1207.5520] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • C. Sleight and M. Taronna, Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings, Phys. Rev. Lett. 116 (2016) 181602 [arXiv:1603.00022] [INSPIRE].

    Article  ADS  Google Scholar 

  • D. Francia, G.L. Monaco and K. Mkrtchyan, Cubic interactions of Maxwell-like higher spins, JHEP 04 (2017) 068 [arXiv:1611.00292] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • O.A. Gelfond and M.A. Vasiliev, Current Interactions from the One-Form Sector of Nonlinear Higher-Spin Equations, Nucl. Phys. B 931 (2018) 383 [arXiv:1706.03718] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • N. Misuna, On current contribution to Fronsdal equations, Phys. Lett. B 778 (2018) 71 [arXiv:1706.04605] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • V.E. Didenko, N.G. Misuna and M.A. Vasiliev, Lorentz covariant form of extended higher-spin equations, JHEP 07 (2018) 133 [arXiv:1712.09272] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.E. Didenko, O.A. Gelfond, A.V. Korybut and M.A. Vasiliev, Homotopy Properties and Lower-Order Vertices in Higher-Spin Equations, J. Phys. A 51 (2018) 465202 [arXiv:1807.00001] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  • D.S. Ponomarev and M.A. Vasiliev, Frame-Like Action and Unfolded Formulation for Massive Higher-Spin Fields, Nucl. Phys. B 839 (2010) 466 [arXiv:1001.0062] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S.M. Kuzenko and M. Tsulaia, Off-shell massive N = 1 supermultiplets in three dimensions, Nucl. Phys. B 914 (2017) 160 [arXiv:1609.06910] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions, JHEP 08 (2018) 055 [arXiv:1805.04413] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder and K. Koutrolikos, BRST Analysis of the Supersymmetric Higher Spin Field Models, JHEP 12 (2015) 106 [arXiv:1510.06569] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Higher Spin Superfield interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices, Universe 4 (2018) 6 [arXiv:1708.06262] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • I.L. Buchbinder, S. Fedoruk, A.P. Isaev and A. Rusnak, Model of massless relativistic particle with continuous spin and its twistorial description, JHEP 07 (2018) 031 [arXiv:1805.09706] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP 07 (2018) 016 [arXiv:1805.00394] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D.V. Uvarov, Ambitwistors, oscillators and massless fields on AdS 5, Phys. Lett. B 762 (2016) 415 [arXiv:1607.05233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D.V. Uvarov, Massless spinning particle and null-string on AdS d : projective-space approach, J. Phys. A 51 (2018) 285402 [arXiv:1707.05761] [INSPIRE].

    MATH  Google Scholar 

  • D. Sorokin and M. Tsulaia, Higher Spin Fields in Hyperspace. A Review, Universe 4 (2018) 7 [arXiv:1710.08244] [INSPIRE].

  • T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP 11 (2014) 131 [arXiv:1410.7668] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Basile, X. Bekaert and E. Joung, Conformal Higher-Spin Gravity: Linearized Spectrum = Symmetry Algebra, JHEP 11 (2018) 167 [arXiv:1808.07728] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Basile, E. Joung, S. Lal and W. Li, Character Integral Representation of Zeta function in AdS d+1 : I. Derivation of the general formula, JHEP 10 (2018) 091 [arXiv:1805.05646] [INSPIRE].