link.springer.com

Precrop root system determines root diameter of subsequent crop - Biology and Fertility of Soils

  • ️Köpke, Ulrich
  • ️Fri Aug 21 2015
  • Athmann M, Kautz T, Pude R, Köpke U (2013) Root growth in biopores—evaluation with in situ endoscopy. Plant Soil 371:179–190. doi:10.1007/s11104-013-1673-5

    Article  CAS  Google Scholar 

  • Atwell BJ (1988) Physiological responses of lupin roots to soil compaction. Plant Soil 111:277–281. doi:10.1007/Bf02139953

    Article  Google Scholar 

  • Bengough AG (2003) Root growth and function in relation to soil structure, composition, and strength. In: de Kroon H, Visser EJW (eds) Root ecology. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, pp 151–171

    Chapter  Google Scholar 

  • Bengough AG (2012) Root elongation is restricted by axial but not by radial pressures: so what happens in field soil? Plant Soil 360:15–18. doi:10.1007/s11104-012-1428-8

    Article  CAS  Google Scholar 

  • Bengough AG, Mackenzie CJ (1994) Simultaneous measurement of root force and elongation for seedling pea roots. J Exp Bot 45:95–102

    Article  Google Scholar 

  • Böhm W (1979) Monolith methods. In: Böhm W (ed) Methods of studying root systems. Springer-Verlag Berlin Heidelberg, New York, Berlin, Heidelberg, pp 20–29

    Chapter  Google Scholar 

  • Carrow RN (1996) Drought avoidance characteristics of diverse tall fescue cultivars. Crop Sci 36:371–377. doi:10.2135/cropsci1996.0011183X003600020026x

    Article  Google Scholar 

  • Föhse D, Claassen N, Jungk A (1991) Phosphorus efficiency of plants. Plant Soil 132:261–272. doi:10.1007/BF00011205

    Google Scholar 

  • Gaiser T, Perkons U, Küpper PM, Uteau Puschmann D, Peth S, Kautz T, Pfeifer J, Ewert F, Horn R, Köpke U (2012) Evidence of improved water uptake from subsoil by spring wheat following lucerne in a temperate humid climate. Field Crop Res 126:56–62. doi:10.1016/j.fcr.2011.09.019

    Article  Google Scholar 

  • Godin C, Sinoquet H (2005) Functional-structural plant modelling. New Phytol 166:705–708. doi:10.1111/j.1469-8137.2005.01445.x

    Article  PubMed  Google Scholar 

  • Han E, Kautz T, Perkons U, Lüsebrink M, Pude R, Köpke U (2015a) Quantification of soil biopore density after perennial fodder cropping. Plant Soil. doi:10.1007/s11104-015-2488-3

    Google Scholar 

  • Han E, Kautz T, Perkons U, Uteau D, Peth S, Huang N, Horn R, Köpke U (2015b) Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biol Fertil Soils. doi:10.1007/s00374-015-1032-1

    Google Scholar 

  • Hatano R, Iwanaga K, Okajima H, Sakuma T (1988) Relationship between the distribution of soil macropores and root elongation. Soil Sci Plant Nutr 34:535–546. doi:10.1080/00380768.1988.10416469

    Article  Google Scholar 

  • Hirth JR, McKenzie BM, Tisdall JM (2005) Ability of seedling roots of Lolium perenne L. to penetrate soil from artificial biopores is modified by soil bulk density, biopore angle and biopore relief. Plant Soil 272:327–336. doi:10.1007/s11104-004-5764-1

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820. doi:10.1046/j.1365-3040.1999.00454.x

    Article  Google Scholar 

  • Huang B, Gao H (2000) Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci 40:196–203. doi:10.2135/cropsci2000.401196x

    Article  Google Scholar 

  • Huck MG, Klepper B, Taylor HM (1970) Diurnal variations in root diameter. Plant Physiol 45:529–530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytol 172:523–535. doi:10.1111/j.1469-8137.2006.01847.x

    Article  PubMed  CAS  Google Scholar 

  • Jungk A, Claassen N (1997) Ion diffusion in the soil-root system. Adv Agron 61:53–110. doi:10.1016/S0065-2113(08)60662-8

    Article  CAS  Google Scholar 

  • Kautz T (2014) Research on subsoil biopores and their functions in organically managed soils: a review. Renew Agric Food Syst. doi:10.1017/S1742170513000549

    Google Scholar 

  • Kautz T, Perkons U, Athmann M, Pude R, Köpke U (2013) Barley roots are not constrained to large-sized biopores in the subsoil of a deep Haplic Luvisol. Biol Fertil Soils 49:959–963. doi:10.1007/s00374-013-0783-9

    Article  Google Scholar 

  • Kautz T, Lüsebrink M, Pätzold S, Vetterlein D, Pude R, Athmann M, Küpper PM, Perkons U, Köpke U (2014) Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia 57:47–52. doi:10.1016/j.pedobi.2013.09.008

    Article  Google Scholar 

  • Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195. doi:10.1016/j.fcr.2008.02.010

    Article  Google Scholar 

  • Kolb E, Hartmann C, Genet P (2012) Radial force development during root growth measured by photoelasticity. Plant Soil 360:19–35. doi:10.1007/s11104-012-1316-2

    Article  CAS  Google Scholar 

  • Köpke U, Athmann M, Han E, Kautz T (2015) Optimising cropping techniques for nutrient and environmental management in organic agriculture. Sustain Agric Res 4:11–21

    Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66:2199–2210. doi:10.1093/jxb/eru508

    Article  PubMed  CAS  Google Scholar 

  • Materechera SA, Alston AM, Kirby JM, Dexter AR (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 144:297–303. doi:10.1007/BF00012888

    Article  Google Scholar 

  • McCallum MH, Kirkegaard JA, Green TW, Cresswell HP, Davies SL, Angus JF, Peoples MB (2004) Improved subsoil macroporosity following perennial pastures. Aust J Exp Agric 44:299–307. doi:10.1071/EA03076

    Article  Google Scholar 

  • McKenzie BM, Bengough AG, Hallett PD, Thomas WTB, Forster B, McNicol JW (2009) Deep rooting and drought screening of cereal crops: a novel field-based method and its application. Field Crop Res 112:165–171. doi:10.1016/j.fcr.2009.02.012

    Article  Google Scholar 

  • Passioura JB (1988) Water transport in and to roots. Annu Rev Plant Physiol Plant Mol Biol 39:245–265. doi:10.1146/annurev.arplant.39.1.245

    Article  Google Scholar 

  • Perkons U, Kautz T, Uteau D, Peth S, Geier V, Thomas K, Holz KL, Athmann M, Pude R, Köpke U (2014) Root-length densities of various annual crops following crops with contrasting root systems. Soil Tillage Res 137:50–57. doi:10.1016/j.still.2013.11.005

    Article  Google Scholar 

  • Pierret A, Moran CJ, Pankhurst CE (1999) Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 211:51–58. doi:10.1023/a:1004490800536

    Article  CAS  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biol Fertil Soils 51:403–415. doi:10.1007/s00374-015-0996-1

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Reinhardt DR, Miller RM (1990) Size classes of root diameter and mycorrhizal fungal colonization in 2 temperate grassland communities. New Phytol 116:129–136. doi:10.1111/j.1469-8137.1990.tb00518.x

    Article  Google Scholar 

  • Robinson D, Hodge A, Fitter A (2003) Constraints on the form and function of root systems. In: de Kroon H, Visser EJW (eds) Root ecology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–31

    Chapter  Google Scholar 

  • Stevens GN, Jones RH (2006) Patterns in soil fertility and root herbivory interact to influence fine-root dynamics. Ecology 87:616–624. doi:10.1890/05-0809

    Article  PubMed  Google Scholar 

  • Stewart JB, Moran CJ, Wood JT (1999) Macropore sheath: quantification of plant root and soil macropore association. Plant Soil 211:59–67. doi:10.1023/A:1004405422847

    Article  CAS  Google Scholar 

  • Stirzaker RJ, Passioura JB, Wilms Y (1996) Soil structure and plant growth: impact of bulk density and biopores. Plant Soil 185:151–162. doi:10.1007/bf02257571

    Article  CAS  Google Scholar 

  • van Noordwijk M, Schoonderbeek D, Kooistra MJ (1993) Root-soil contact of field-grown winter wheat. Geoderma 56:277–286. doi:10.1016/0016-7061(93)90117-4

    Article  Google Scholar 

  • Veen BW, van Noordwijk M, de Willigen P, Boone FR, Kooistra MJ (1992) Root-soil contact of maize, as measured by a thin-section technique. III. Effects on shoot growth, nitrate and water-uptake efficiency. Plant Soil 139:131–138. doi:10.1007/Bf00012850

    Article  Google Scholar 

  • Vetterlein D, Kühn T, Kaiser K, Jahn R (2013) Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. Plant Soil 371:267–279. doi:10.1007/s11104-013-1680-6

    Article  CAS  Google Scholar 

  • Volkmar KM (1996) Effects of biopores on the growth and N-uptake of wheat at three levels of soil moisture. Can J Soil Sci 76:453–458. doi:10.1007/s00248-012-0132-9

    Article  CAS  Google Scholar 

  • White RG, Kirkegaard JA (2010) The distribution and abundance of wheat roots in a dense, structured subsoil—implications for water uptake. Plant Cell Environ 33:133–148. doi:10.1111/j.1365-3040.2009.02059.x

    Article  PubMed  Google Scholar