link.springer.com

Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study - Climate Dynamics

  • ️Andronova, N.
  • ️Wed Apr 05 2006

References

  • Andronova NG, Rozanov EV, Yang F, Schlesinger ME, Stenchikov GL (1999) Radiative forcing by volcanic aerosols from 1850 through 1994. J Geophys Res 104:807–816

    Article  Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect. A sensitivity study with two general circulation models. Tellus 47B:281–300

    Google Scholar 

  • Bower KN, Moss SJ, Johnson DW, Choularton TW, Latham J, Brown PRA, Blyth AM, Cardwell J (1996) A parameterization of the ice water content observed in frontal and convective clouds. Q J R Meteorol Soc 122:1815–1844

    Article  Google Scholar 

  • Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Deque M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, Li Z-X, Liang X-Z, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang M-H (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95:16601–16615

    Article  Google Scholar 

  • Charlock TP, Ramanathan V (1985) The albedo and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J Atmos Sci 42:1408–1429

    Article  Google Scholar 

  • Cober SG, Isaac George A, Korolev AV, Strapp JW (2001) Assessing cloud-phase conditions. J Appl Met 40(11):1967–1983

    Article  Google Scholar 

  • Donner LJ, Seman CJ, Soden BJ, Hemler RS, Warren JC, Strom J, Liou K-N (1997) Largescale ice clouds in the GFDL SKYHI general circulation model. J Geophys Res 102:21745–21768

    Article  Google Scholar 

  • Feigelson EM (1978) Preliminary radiation model of a cloudy atmosphere, 1, structure of clouds and solar radiation. Beitr Phys Atmos 51:203–229

    Google Scholar 

  • Fowler D, Randall DA, Rutledge A (1996) Liquid and ice cloud microphysics in the CSU general circulation model. Part I: model description and simulated microphysical processes. J Clim 9:489–259

    Article  Google Scholar 

  • GFDL Global Atmospheric Model Development Team (2004) The new GFDL global atmosphere and land model AM2-LM2: evaluation with prescribed SST simulations. J Climate 17(24):4641–4673

    Google Scholar 

  • Harrison EF, Minnis P, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J Geophys Res 95:18687–18703

    Article  Google Scholar 

  • Kållberg P, Simmons A, Uppala S, Fuentes M (2004) The ERA-40 archive, ERA-40 Project Report Series, No. 17, ECMWF. Available from http://www.ecmwf.int/publications/library/ecpublications/_pdf/era40/ERA40_PRS17.pdf

  • Kristjánsson JE (1994) Tests of a new cloud treatment in an atmospheric general circulation model. Physica D 77(1–3):23–32

    Article  Google Scholar 

  • K-1 model developers (2004) K-1 coupled model (MIROC) description K-1 technical report, 1, H Hasumi and S Emori (eds) Center for Climate System Research, University of Tokyo, Available from http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf

  • Le Treut H, Li ZX (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187

    Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12:557–572

    Article  Google Scholar 

  • Martin GM, Johnson DW, Spice A (1994) The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci 51(13):1823–1842

    Article  Google Scholar 

  • McAvaney BJ, Le Treut H (2003) The cloud feedback intercomparison project:(CFMIP). In CLIVAR Exchanges—supplementary contributions, 26 March 2003

  • Mitchell J, Ingram WJ (1992) CO2 and climate: a missing feedback? Nature 341:132–134

    Article  Google Scholar 

  • Nemesure S, Cess RD, Dutton EG, Deluisi JJ, Li Z, Leighton HG (1994) Impact of cloud on the shortwave radiation budget of the surface-atmosphere system for snow-covered surfaces. J Clim 4:579–585

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Rotstayn LD (1997) A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: description and evaluation of microphysical processes. Q J R Meteorol Soc 123:1227–1282

    Article  Google Scholar 

  • Rotstayn LD, Ryan BF, Katzfey J (2000) A scheme for calculation of the liquid fraction in mixed-phase clouds in large-scale models. Mon Wea Rev 128:1070–1088

    Article  Google Scholar 

  • Ryan BF (1996) On the global variation of precipitating layer clouds. Bull Am Meteor Soc 77:53–70

    Article  Google Scholar 

  • Senior CA, Mitchell JFB (1993) Carbon dioxide and climate: the impact of cloud parameterization. J Clim 6:393–418

    Article  Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116:435–460

    Article  Google Scholar 

  • Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690

    Article  Google Scholar 

  • Sundqvist H (1988) Parametrization of condensation and associated clouds in models for weather prediction and general simulation. In: Schlesinger ME (ed) Physically based Modelling and simulation of climate and climatic change, Part I. Kluwer, Dordrecht, pp 433–461

  • Tiedtke M (1993) Representation of clouds in large-scale models. Mon Wea Rev 121:3040–3061

    Article  Google Scholar 

  • Tomita H, Miura H, Iga S, Nasuno T, Satoh M (2004) A global cloud-resolving simulation: preliminary results from an aqua planet experiment. Geophys Res Lett 32(8):L08805 10.1029/2005GL022459

  • Webb M, Senior C, Bony S, Morcrette JJ (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905–922

    Article  Google Scholar 

  • Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor K (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn. DOI 10.1007/s00382-006-0111-2

  • Wetherald RT, Manabe S (1998) Cloud feedback process in a general circulation model. J Atmos Sci 45:1397–1415

    Article  Google Scholar 

  • Wilson RD, Ballard SP (1999) A Microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q J R Meteorol Soc 125:1607–1636

    Article  Google Scholar 

  • Yang F, Schlesinger ME, Rozanov EV (2000) Description and performance of the UIUC 24-layer stratosphere-troposphere general-circulation model. J Geophys Res 105(D14):17925–17954

    Article  Google Scholar 

  • Yin J H (2005) A consistent poleward shift of the storm tracks in simulations of 21st Century climate. Geophys Res Lett 32:L18701, DOI 10.1029/2005GL023684

Download references