link.springer.com

Surface Characterisation of Bioadhesive PLGA/Chitosan Microparticles Produced by Supercritical Fluid Technology - Pharmaceutical Research

  • ️Illum, Lisbeth
  • ️Fri Mar 11 2011
  • Maurya SK, Pathak K, Bali V. Therapeutic potential of mucoadhesive drug delivery systems—an updated patent review. Recent Pat Drug Deliv Formul 2010; Jul 22.

  • Peppasand NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Rel. 1985;2:257–75.

    Article  Google Scholar 

  • Avgoustakis K. Pegylated poly(Lactide) and poly(Lactide-Co-Glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv. 2004;1:321–33.

    Article  PubMed  CAS  Google Scholar 

  • Gattani SG, Savaliya PJ, Belgamwar VS. Floating-mucoadhesive beads of clarithromycin for the treatment of helicobacter pylori infection. Chem Pharm Bull. 2010;58:782–7.

    Article  PubMed  CAS  Google Scholar 

  • Thakral N, Ray A, Majumdar D. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mat Sci: Materials in Medicine 2010.

  • Mishra N, Goyal AK, Tiwari S, Paliwal R, Paliwal SR, Vaidya B, et al. Recent advances in mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymeric carriers. Expert Opin Ther Pat. 2010;20:661–79.

    Article  PubMed  CAS  Google Scholar 

  • Jaganathanand KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant Hepatitis B antigen administered intranasally. Vaccine. 2006;24:4201–11.

    Article  Google Scholar 

  • Pawar D, Goyal A, Mangal S, Mishra N, Vaidya B, Tiwari S, et al. Evaluation of mucoadhesive PLGA microparticles for nasal immunization. The AAPS Journal. 2010;12:130–7.

    Article  PubMed  CAS  Google Scholar 

  • Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28:6282–91.

    Article  PubMed  Google Scholar 

  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364:298–327.

    Article  PubMed  CAS  Google Scholar 

  • Xie S, Zhu Q, Wang B, Gu H, Liu W, Cui L, et al. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2010;31:5100–9.

    Article  PubMed  CAS  Google Scholar 

  • Senyigit ZA, Vetter A, Guneri T, Bernkop-Schnurch A. Gastroretentive particles formulated with thiomers: development and in vitro evaluation. J Drug Target. 2010;18:362–72.

    Article  PubMed  CAS  Google Scholar 

  • Shim IK, Lee SY, Park YJ, Lee MC, Lee SH, Lee JY, et al. Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration. J Biomed Mat Res Part A. 2008;84A:247–55.

    Article  CAS  Google Scholar 

  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  PubMed  CAS  Google Scholar 

  • Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008;97:2395–404.

    Article  PubMed  CAS  Google Scholar 

  • Lewis AL, Illum L. Formulation strategies for sustained release of proteins. Ther Del. In press: 2010.

  • Frank A. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int. 2005;54:36–46.

    Article  Google Scholar 

  • Bala I, Hariharan S, Ravi Kumar MNV. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Car Syst. 2004;21:387–422.

    Article  CAS  Google Scholar 

  • Giunchedi P, Conti B, Scalia S, Conte U. in vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Rel. 1998;56:53–62.

    Article  CAS  Google Scholar 

  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–90.

    Article  PubMed  CAS  Google Scholar 

  • Jalil R, Nixon JR. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencap. 1990;7:297–325.

    Article  CAS  Google Scholar 

  • Cohen S, Alonso MJ, Langer R. Novel approaches to controlled-release antigen delivery. Int J Tech Assess Health Care. 1994;10:121–30.

    Article  CAS  Google Scholar 

  • He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Woitiski CB, Neufeld RJ, Ribeiro AJ, Veiga F. Colloidal carrier integrating biomaterials for oral insulin delivery: influence of component formulation on physicochemical and biological parameters. Acta Biomaterialia. 2009;5:2475–84.

    Article  PubMed  CAS  Google Scholar 

  • Murphy CS, Pillay V, Choonara YE, du Toit LC. Gastroretentive drug delivery systems: current developments in novel system design and evaluation. Curr Drug Deliv. 2009;6:451–60.

    Article  PubMed  CAS  Google Scholar 

  • Ratzinger G, Wang X, Wirth M, Gabor F. Targeted PLGA microparticles as a novel concept for treatment of lactose intolerance. J Control Rel. 2010;147:187–92.

    Article  CAS  Google Scholar 

  • Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19:998–1008.

    Article  PubMed  CAS  Google Scholar 

  • Leane MM, Hinchcliffe M, Smith A, Davis SS, Illum L. Investigation of the duodenal absorption of insulin-chitosan formulations in rats. Int Symp Control Rel Bioact Mater. 2003;30:683.

    Google Scholar 

  • Deacon MP, McGurk S, Roberts CJ, Williams PM, Tendler SJ, Davies MC, et al. Atomic force microscopy of gastric mucin and chitosan mucoadhesive systems. Biochem J. 2000;348:557–63.

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson HH, Loftsson T, Lehr C-M. Assessment of mucoadhesion by a resonant mirror biosensor. Int J Pharm. 2006;325:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Li DX, Yamamoto H, Takeuchi H, Kawashima Y. A novel method for modifying AFM probe to investigate the interaction between biomaterial polymers (Chitosan-coated PLGA) and mucin film. Eur J Pharm Biopharm. 2010;75:277–83.

    Article  PubMed  CAS  Google Scholar 

  • Soane RJ, Hinchcliffe M, Davis SS, Illum L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm. 2001;217:183–91.

    Article  PubMed  CAS  Google Scholar 

  • Davies OR, Lewis AL, Whitaker MJ, Tai H, Shakesheff KM, Howdle SM. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2008;60:373–87.

    Article  PubMed  CAS  Google Scholar 

  • Koushik K, Kompella U. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm Res. 2004;21:524–35.

    Article  PubMed  CAS  Google Scholar 

  • Licence P, Dellar MP, Wilson RGM, Fields PA, Litchfield D, Woods HM, et al. Large-aperture variable-volume view cell for the determination of phase-equilibria in high pressure systems and supercritical fluids. Rev Sci Instru. 2004;75:3233–6.

    Article  CAS  Google Scholar 

  • Hao J, Whitaker MJ, Wong B, Serhatkulu G, Shakesheff KM, Howdle SM. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size. J Pharm Sci. 2004;93:1083–90.

    Google Scholar 

  • Whitaker MJ, Hao J, Davies OR, Serhatkulu G, Stolnik-Trenkic S, Howdle SM, et al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J Control Rel. 2005;101:85–92.

    Article  CAS  Google Scholar 

  • Mantle M, Allen A. A colorimetric assay for glycoproteins based on the periodic/Schiff stain. Biochem Soc Trans. 1978;6:607–9.

    PubMed  CAS  Google Scholar 

  • He P, Davis SS, Illum L. in vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166:75–88.

    Article  CAS  Google Scholar 

  • Reverchon E, Antonacci A. Drug-polymer microparticles produced by supercritical assisted atomization. Biotech Bioeng. 2007;97:1626–37.

    Article  CAS  Google Scholar 

  • Amidi M, Pellikaan HC, de Boer AH, Crommelin DJA, Hennink WE, Jiskoot W. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery. Eur J Pharm Biopharm. 2008;68:191–200.

    Article  PubMed  CAS  Google Scholar 

  • Nie H, Lee LY, Tong H, Wang C-H. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J Control Rel. 2008;129:207–14.

    Article  CAS  Google Scholar 

  • Okamoto H, Nishida S, Todo H, Sakakura Y, Iida K, Danjo K. Pulmonary gene delivery by chitosan-pDNA complex powder prepared by a supercritical carbon dioxide process. J Pharm Sci. 2003;92:371–80.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Sakakura Y, Shiraki K, Oka K, Nishida S, Todo H, et al. Stability of chitosan-pDNA complex powder prepared by supercritical carbon dioxide process. Int J Pharm. 2005;290:73–81.

    Article  PubMed  CAS  Google Scholar 

  • Zhu AP, Fang N, Chan-Park MB, Chan V. Adhesion contact dynamics of 3T3 fibroblasts on poly (lactide-co-glycolide acid) surface modified by photochemical immobilization of biomacromolecules. Biomaterials. 2006;27:2566–76.

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Foerg C, Ellenberger S, Merkle HP, Gander B. One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands. J Control Rel. 2006;111:135–44.

    Article  CAS  Google Scholar 

  • Grenha A, Seijo B, Serra C, Remunan-Lopez C. Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules. 2007;8:2072–9.

    Article  PubMed  CAS  Google Scholar 

  • Belu AM, Graham DJ, Castner DG. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003;24:3635–53.

    Article  PubMed  CAS  Google Scholar 

  • Chesko J, Kazzaz J, Ugozzoli M, Singh M, O’Hagan DT, Madden C, et al. Characterization of antigens adsorbed to anionic PLG microparticles by XPS and TOF-SIMS. J Pharm Sci. 2008;97:1443–53.

    Article  PubMed  CAS  Google Scholar 

  • Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech. 2004;5:67.

    Article  Google Scholar