link.springer.com

Glyphosate affects photosynthesis in first and second generation of glyphosate-resistant soybeans - Plant and Soil

  • ️Constantin, Jamil
  • ️Fri Jul 02 2010
  • Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S (2004) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manage Sci 60:163–166

    Article  CAS  Google Scholar 

  • Bellaloui N, Reddy KN, Zablotowicz RM, Abbas HK, Abel CA (2009) Effects of glyphosate on seed iron and root ferric (III) reductase in soybean cultivars. J Agric Food Chem. doi:10.1021/jf902175y

    Google Scholar 

  • Bott S, Tesfamariam T, Candan H, Cakmak I, Romheld V, Neumann G (2008) Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 312:185–194

    Article  CAS  Google Scholar 

  • Bromilow RH, Chamberlain K, Tench AJ, Williams RH (1993) Phloem translocation of strong acids: glyphosate, substituted phosphonic, and sulfonic acids in Ricinus communis L. Pestic Sci 37:39–47

    Article  CAS  Google Scholar 

  • Cakmak I, Yazici A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur J Agron 31:114–119

    Article  CAS  Google Scholar 

  • Campbell WF, Evans JO, Reed SC (1976) Effect of glyphosate on chloroplast ultrastructure of quackgrass mesophyll cells. Weed Sci 24:22–25

    CAS  Google Scholar 

  • Centritto M, Magnani F, Lee HSJ, Jarvis PG (1999) Interactive effects of elevated [CO2] and drougth on cherry (Prunus avium) seedlings: II. Photosynthetic capacity and water relations. New Phytol 141:141–153

    Article  Google Scholar 

  • Cheng L, Fuchigami LH, Breen PJ (2001) The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. J Exp Bot 52:1865–1872

    Article  CAS  PubMed  Google Scholar 

  • Cole DJ (1985) Mode of action of glyphosate—a literature analysis. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworths, London, pp 48–74

    Google Scholar 

  • Coutinho CFB, Mazo LH (2005) Complexos metálicos com o herbicida glyphosate: Revisão. Química Nova 28:1038–1045

    Article  CAS  Google Scholar 

  • Da Matta FM, Loos RA, Rodrigues R, Barros RS (2001) Actual and potential photosynthetic rates of tropical crop species. R Bras Fisiol Veg 13:24–32

    Google Scholar 

  • Demming-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  Google Scholar 

  • Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manage Sci 61:211–218

    Article  CAS  Google Scholar 

  • Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 51:340–344

    Article  CAS  PubMed  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide; ACS Monograph 189. American Chemical Society, Washington, DC

    Google Scholar 

  • Fritschi FB, Ray JD (2007) Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica 45:92–98

    Article  CAS  Google Scholar 

  • Gazziero DLP, Adegas F, Voll E (2008) Glifosate e soja transgênica. Londrina: Embrapa Soja, Circular Técnica 60, p 4

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gianessi LP, Carpenter JE (2000) Agricultural biotechnology: benefits of transgenic soybeans. National Center for Food and Agricultural Policy

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Ann Rev Plant Physiol Plant Mol Biol 4:655–684

    Article  Google Scholar 

  • Huber DM (2006) Strategies to ameliorate glyphosate immobilization of manganese and its impact on the rhizosphere and disease. In: Lorenz N, Dick R (eds) Proceedings of the glyphosate potassium symposium 2006. Ohio State University, AG Spectrum, DeWitt

    Google Scholar 

  • Jaworski EG (1972) Mode of action of N-phosphonomethyl-glycine: inhibition of aromatic amino acid biosynthesis. J Agric Food Chem 20:1195–1198

    Article  CAS  Google Scholar 

  • Jiang C-D, Gao H-Y, Zou Q, Jiang G-M, Li L-H (2006) Leaf orientation, photorespiration and xanthophyll cycle protect young soybean against high irradiance in field. Environ Exp Bot 55:87–96

    Article  CAS  Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152

    Article  CAS  Google Scholar 

  • Kabachnik MI, TYa M, Dyatolva NM, Rudomino MV (1974) Organophosphorus complexones. Russ Chem Rev 43:733–744

    Article  Google Scholar 

  • King AC, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to glyphosate applications. Agron J 93:179–186

    Article  CAS  Google Scholar 

  • Kitchen LM, Witt WW, Rieck CE (1981) Inhibition of chlorophyll accumulation by glyphosate. Weed Sci 29:513–516

    CAS  Google Scholar 

  • Körner C (1995) Leaf diffusive conductances in the major vegetation types on the globe. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 463–490

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kumudini S, Prior E, Omielan J, Tollenaar M (2008) Impact of Phakospsora pachyrhizi infection on soybean leaf photosynthesis and radiation absorption. Crop Sci 48:2343–2350

    Article  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Humphries SW, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Magalhães Filho JR, Amaral LR, Machado DFSP, Medina CL, Machado EC (2008) Deficiência hídrica, trocas gasosas e crescimento de raízes em laranjeira “Valencia” sobre dois tipos de porta enxerto. Bragantia 67:75–82

    Article  Google Scholar 

  • Martinell BJ, Julson LS, Emler CA, Huang Y, McCabe DE, Williams EJ (2002) Soybean Agrobacterium transformation method. United States Patent 6(384):301

    Google Scholar 

  • Martínez-Ferri E, Manrique E, Valladares F, Balaguer L (2004) Winter photoinhibition in the field involves different processes on four co-occurring Mediterranean tree species. Tree Physiol 24:981–990

    PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence, a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Nilsson G (1985) Interactions between glyphosate and metals essential for plant growth. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworth, London, pp 35–47

    Google Scholar 

  • Paschal EH (1997) Soybean cultivar 88154622393. United States Patent 5,659,114

  • Pihakaski S, Pihakaski K (1980) Effects of glyphosate on ultrastructure and photosynthesis of Pellia epiphylla. Ann Bot 46:133–141

    CAS  Google Scholar 

  • Pinkard EA, Patel V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. glogulus using a non-destructive meter. For Ecol Manag 223:211–217

    Article  Google Scholar 

  • Queiroz CGS, Garcia QS, Lemos Filho JP (2002) Atividade fotossintética e peroxidação de lipidios de membrana em plantas de aroreira-do-sertão sob estresse hídrico e após reidratação. Braz J Plant Physiol 14:59–63

    Article  CAS  Google Scholar 

  • Reddy KN, Zablotowicz RM (2003) Glyphosate-resistant soybean response to various salts of glyphosate and glyphosate accumulation in soybean nodules. Weed Sci 51:496–502

    Article  CAS  Google Scholar 

  • Reddy KN, Hoagland RE, Zablotowicz RM (2000) Effect of glyphosate on growth, chlorophyll content and nodulation in glyphosate-resistant soybeans (Glycine max) varieties. J New Seeds 2:37–52

    Article  Google Scholar 

  • Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143

    Article  CAS  PubMed  Google Scholar 

  • Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  • SAS Institute (2006) SAS/STAT version 9.1, SAS Institute, Cary, NC

  • Shibles RM, Weber CR (1965) Leaf area, solar radiation interception, and dry matter production by various soybean planting patterns. Crop Sci 6:575–577

    Article  Google Scholar 

  • Singh B, Singh Y, Ladha JK, Bronson KF, Balasubramanian V, Singh J, Khind CS (2002) Chlorophyll meter- and leaf color chart-based nitrogen management for rice and wheat in Northwestern India. Agron J 94:821–89

    Article  Google Scholar 

  • SPSS (2000), SysStat © for Windows, Version 10

  • Taiz L, Zeiger E (1998) Mineral nutrition. In: Plant physiology. Sinauer Associates, Sunderland, pp 111–144

  • Taylor M, Hartnell G, Lucas D, Davis S, Nemeth M (2007) Comparison of broiler performance and carcass parameters when fed diets containing soybean meal produced from glyphosate-tolerant (MON 89788) control, or conventional reference soybeans. Poult Sci 86:2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Thompson JA, Schweitzer LE, Nelson RL (1996) Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll content with apparent photosynthesis in soybean. Photosynth Res 49:1–10

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Protec 26:370–376

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Rizvi PQ (2005) Effect of herbicides on growth, nodulation and nitrogen content of greengram. Agron Sustain Dev 25:497–504

    Article  CAS  Google Scholar 

  • Zlatev ZS, Yordanov IT (2004) Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg J Plant Physiol 30:3–18

    CAS  Google Scholar 

  • Zobiole LHS, Oliveira RS Jr, Huber DM, Constantin J, de Castro C, Oliveira FA, Oliveira A Jr (2010a) Glyphosate reduces shoot concentration of mineral nutrients in glyphosate-resistant soybeans. Plant Soil 328:57–69

    Article  CAS  Google Scholar 

  • Zobiole LHS, Oliveira RS Jr, Kremer RJ, Constantin J, Bonato CM, Muniz AS (2010b) Water use efficiency and photosynthesis of glyphosate-resistant soybean as affected by glyphosate. Pestic Biochem Physiol. doi:10.1016/j.pestbp.2010.01.004

    Google Scholar