link.springer.com

Modeling the open circuit output voltage of piezoelectric nanogenerator - Science China Technological Sciences

  • ️Zhang, Yan
  • ️Mon Sep 16 2013

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang Z L, Song J. Piezoelectric nanogen-erators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  Google Scholar 

  2. Wang Z L. Energy harvesting for self-powered nanosystems. Nano Res, 2008, 1(1): 1–8

    Article  Google Scholar 

  3. Wang Z L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv Funct Mater, 2008, 18(22): 3553–3567

    Article  Google Scholar 

  4. Wang Z L. Energy harvesting using piezoelectric nanowires-A correspondence on “energy harvesting using nanowires?” by Alexe et al. Adv Mater, 2009, 21(13): 1311–1315

    Article  Google Scholar 

  5. Wang Z L, Wu W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed Engl, 2012, 51(47): 11700–21

    Article  Google Scholar 

  6. Wang Z L. Nanomaterials: Sticky but not messy. Nat Nanotechnol, 2009, 4(7): 407–8

    Article  Google Scholar 

  7. Wang Z L. Progress in piezotronics and piezo-phototronics. Adv Mater, 2012, 24(34): 4632–4646

    Article  Google Scholar 

  8. Wang S, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett, 2012, 12(12): 6339–6346

    Article  Google Scholar 

  9. Yang X H, Zhu G, Wang S H, et al. A self-powered electrochromic device driven by a nanogenerator. Energ Environ Sci, 2012, 5(11): 9462

    Article  Google Scholar 

  10. Lee S, Bae S H, Lin L, et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater, 2013, 23(19): 2445–2449

    Article  Google Scholar 

  11. Su Y J, Yang Y, Zhang H L, et al. Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator. Nanotechnology, 2013, 24(29): 295401

    Article  Google Scholar 

  12. Zhu G, Pan C, Zhu W, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett, 2012, 12(9): 4960–5

    Article  Google Scholar 

  13. Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res, 2011, 4(11): 1013–1098

    Article  Google Scholar 

  14. Wang Z L. Toward self-powered sensor networks. Nano Today, 2010, 5(6): 512–514

    Article  Google Scholar 

  15. Wang Z L. Self-powered nanosensors and nanosystems. Adv Mater, 2012, 24(2): 280–5

    Article  Google Scholar 

  16. Hu Y F, Zhang Y, Xu C, et al. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett, 2010, 10: 5025–5031

    Article  Google Scholar 

  17. Lin L, et al. Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy, 2013, 2(1): 75–81

    Article  Google Scholar 

  18. Wang Z L. From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures. MRS Bull, 2012, 37(09): 814–827

    Article  Google Scholar 

  19. Patel R, McWilliam S, Popov A A. A geometric parameter study of piezoelectric coverage on a rectangular cantilever energy harvester. Smart Mater Struct, 2011, 20(8): 085004

    Article  Google Scholar 

  20. Shu Y C, Lien I C. Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct, 2006, 15(6): 1499–1512

    Article  Google Scholar 

  21. Shu Y C, Lien I C, Wu W J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater Struct, 2007, 16(6): 2253–2264

    Article  Google Scholar 

  22. Sun C, Shi J, Wang X. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J Appl Phys, 2010, 108(3): 034309

    Article  Google Scholar 

  23. Zhao S, Erturk A. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater Struct, 2013, 22(1): 015002

    Article  Google Scholar 

  24. Ajitsaria J, Choe S Y, Shen D, et al. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct, 2007, 16(2): 447–454

    Article  Google Scholar 

  25. Comsol Model Gallery (Electrostatic Potential Between Two Cylinders), http://www.comsol.com/showroom/gallery/118/, accessed June 2013

  26. Zhang Y, Liu Y, Wang Z L. Fundamental theory of piezotronics. Adv Mater, 2011, 23(27): 3004–13

    Article  Google Scholar 

  27. Romano G, Mantini G, Di Carlo A, et al. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology, 2011, 22(46): 465401

    Article  Google Scholar 

  28. Lu M Y, Chen L J, Mai W, et al. Tunable electric and magnetic properties of CoxZn1-x S nanowires. Appl Phys Lett, 2008, 93(24): 242503

    Article  Google Scholar 

  29. Park K I, Xu S, Liu Y, et al. Piezoelectric BaTiO(3) thin film nanogenerator on plastic substrates. Nano Lett, 2010, 10(12): 4939–4943

    Article  Google Scholar 

Download references