link.springer.com

Chromosome numbers in Homalolepis Turcz. and their significance in Simaroubaceae evolution - Brazilian Journal of Botany

  • ️Forni-Martins, Eliana R.
  • ️Thu Jul 08 2021
  • Apples R, Morris R, Gill BS, May CE (1998) Chromosome biology. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Baratakke RC, Patil CG (2010) Cytological investigations in poly-gamo-dioecious tree Simarouba glauca DC. Nucleus 53:33–36. https://doi.org/10.1007/s13237-010-0008-7

    Article  Google Scholar 

  • Barros e Silva AE, Soares Filho WS, Guerra M (2013) Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 140:62–69

    Article  Google Scholar 

  • Bawa KS (1973) Chromosome numbers of tree species of a lowland tropical community. J Arnold Arbor 54:422–434

    Article  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132. https://doi.org/10.1093/aob/mci008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardello LM, Stiefkens LB, Piovano MA (1990) Números cromosómicos en dicotiledóneas argentinas. Bol Soc Argent Bot 26:149–157

    Google Scholar 

  • Clayton JW (2011) Simaroubaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Springer, Berlin, pp 408–423

    Google Scholar 

  • Clayton JM, Fernando ES, Soltis PS, Soltis DE (2007) Molecular phylogeny of the tree-of-heaven family (Simaroubaceae) based on chloroplast and nuclear markers. Int J Plant Sci 168:1325–1339

    Article  CAS  Google Scholar 

  • Clayton JW, Soltis PS, Soltis DE (2009) Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol 58:395–410. https://doi.org/10.1093/sysbio/syp041

    Article  PubMed  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants, 3rd edn. George Allen and Unwin, London, UK

    Google Scholar 

  • Desai S (1960) Cytology of rutaceae and simaroubaceae. Cytologia 25:28–35. https://doi.org/10.1508/cytologia.25.28

    Article  Google Scholar 

  • Devecchi MF, Thomas WW, Pirani JR (2018a) Taxonomic revision of the neotropical genus Homalolepis Turcz. (Simaroubaceae). Phytotaxa 366:1–108

    Article  Google Scholar 

  • Devecchi MF, Thomas WW, Plunkett GM, Pirani JR (2018b) Testing the monophyly of Simaba (Simaroubaceae): Evidence from five molecular regions and morphology. Mol Phylogenetics Evol 120:63–82. https://doi.org/10.1016/j.ympev.2017.11.024

    Article  Google Scholar 

  • Devecchi MF, Pirani JR, Thomas WW (2020) Simaroubaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB604257. Accessed on: 02 Apr. 2021

  • Funabiki K (1958) Distribution and polyploidy of angiosperms. II Northern Flora of Japan Kromosomo 37:1268–1275

    Google Scholar 

  • Ghosh R (1970a) Karyomorphological studies of somatic chromosomes in Ailanthus excelsa Roxb., an ornamental and a road-side plant. Broteria 39:3–8

    Google Scholar 

  • Ghosh R (1970b) An analysis of the somatic chromosomes in Quassia amara L. with some remarks on its taxonomic status and affinity. Broteria 39:9–15

    Google Scholar 

  • Gill BS, Bir SS, Singhal VK (1979) IOPB chromosome number reports LXV. Taxon 28:627–637

    Article  Google Scholar 

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31:1914–1922. https://doi.org/10.1093/molbev/msu122

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2000) Chromosome number variation and evolution in monocots. In: Wilson KL (ed) Monocots: Systematics and Evolution. CSIRO, Melbourne, pp 127–136

    Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy concepts and implications. Cytogenet Genome Res. 120:339–350. https://doi.org/10.1159/000121083

    Article  CAS  PubMed  Google Scholar 

  • Guimarães RGS (2018) Estudos citotaxonômicos em Sapindales: estado da arte e evolução dos números cromossômicos. Universidade Estadual de Campinas, Campinas, Dissertação de Mestrado

    Book  Google Scholar 

  • Guimarães RGS, Forni-Martins ER (2021) Chromosome numbers and their evolutionary meaning in the Sapindales order – an overview. Braz J Bot (this issue)

  • Khosla P (1978) Cytosystematics of some hardwood families. Nucleus 21:211–218

    Google Scholar 

  • Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686. https://doi.org/10.1007/s001220100643

    Article  CAS  Google Scholar 

  • Kumari S, Saggoo MIS, Kaur J (1989) SOCGI plant chromosome number reports VIII. J Cytol Genet 24:179–183

    Google Scholar 

  • Majovsky J (1970) Index of chromosome numbers of Slovakian flora. Acta Fac Rerum Nat Univ Comen, Bot 16:1–26

    Google Scholar 

  • Mangenot S, Mangenot G (1957) Nombres chromosomiques nouveaux chez diverses Dicotyledones et Monocotyledones d’Afrique occidentale. Bull Du Jard Bot’état Brux 27:639. https://doi.org/10.2307/3666891

    Article  Google Scholar 

  • Mangenot S, Mangenot G (1962) Enquête sur les nombres chromosomiques dans une collection d’espèces tropicales. Bull Soc Bot Fr 109:411–447. https://doi.org/10.1080/00378941.1962.10838117

    Article  Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144. https://doi.org/10.1093/sysbio/syp083

    Article  PubMed  Google Scholar 

  • Mehra PN (1976) Cytology of Himalayan hardwoods. Sree Saraswaty Press Ltd., Calcutta

    Google Scholar 

  • Mehra PN, Khosla PK (1969) IOPB Chromosome number reports XX. Taxon 18:213–221

    Article  Google Scholar 

  • Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A (2011) Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 19:521–530. https://doi.org/10.1007/s10577-011-9203-x

    Article  CAS  PubMed  Google Scholar 

  • Mendes S, Régis T, Terol J, Soares Filho WS, Talon M, Pedrosa-Harand A (2020) Integration of mandarin (Citrus reticulata) cytogenetic map with its genome sequence. Genome 63:437–444. https://doi.org/10.1139/gen-2020-0046

    Article  CAS  PubMed  Google Scholar 

  • Mesquita AT, Romero-da Cruz MV, Azevedo ALS, Forni-Martins ER (2019) Chromosome number and genome size diversity in five Solanaceae genera. Caryologia 72:105–115. https://doi.org/10.13128/caryologia-772

    Article  Google Scholar 

  • Moraes AP, Mirkov TE, Guerra M (2008) Mapping the chromosomes of Poncirus trifoliata Raf. by BAC-FISH. Cytogenet Genome Res 121:277–281. https://doi.org/10.1159/000138897

    Article  CAS  PubMed  Google Scholar 

  • Moraes AP, Barros F, Simões AO, Alayon D, Forni-Martins ER (2016) Detecting mechanisms of karyotype evolution in Heterotaxis (Orchidaceae). PLoS ONE 11:e0165960. https://doi.org/10.1371/journal.pone.0165960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran R, Felger R (1968) Castela polyandra, a new species in a new section: union of Holocantha with Castela (Simaroubaceae). Trans San Diego Soc Nat Hist 15:31–40

    Google Scholar 

  • Murin A, Majovsky J (1978) IOPB chromosome number reports LXI. Taxon 27:375–392

    Article  Google Scholar 

  • Nakajima G (1942) Cytological studies in some flowering dioecious plants, with special reference to the sex chromosomes. Cytologia 12:262–270. https://doi.org/10.1508/cytologia.12.262

    Article  Google Scholar 

  • Pathak GN, Singh B (1949) Chromosome numbers in some angiospermous plants. Curr Sci 18:347

    CAS  PubMed  Google Scholar 

  • Pirani JR, Majure LC, Devecchi MF (2021) An updated account of Simaroubaceae with emphasis on American taxa. Braz J Bot (this issue)

  • Qiu F, Ungerer MC (2018) Genomic abundance and transcriptional activity of diverse Gypsy and Copia long terminal repeat retrotransposons in three wild sunflower species. BMC Plant Biol 18:1–8. https://doi.org/10.1186/s12870-017-1223-z

    Article  CAS  Google Scholar 

  • Rambaut, A. (2018) FigTree v. 1.4.4 Available at http://tree.bio.ed.ac.uk/software/figtree

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225

    Article  CAS  Google Scholar 

  • Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. https://doi.org/10.1159/000440930

    Article  CAS  PubMed  Google Scholar 

  • Romero-da-Cruz MV, Forni-Martins ER, Urdampilleta JD (2017). In: Marhold K, Kucera J (ed). IAPT/IOPB Chromosome data 24 – Capsicum parvifolium, Solanaceae. Taxon 66: 277 (printed version), E16-E17 (online extended version)

  • Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genet 27:207–216. https://doi.org/10.1016/j.tig.2011.03.004

    Article  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Springer, New York

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58:307–324

    Article  CAS  Google Scholar 

  • Silva SC, Marques A, Soares Filho WS, Pedrosa-Harand A, Mirkov TE, Guerra M (2011) The Cytogenetic Map of the Poncirus trifoliata (L.) Raf. - A nomenclature system for chromosomes of all citric species. Trop Plant Biol 4:99–105. https://doi.org/10.1007/s12042-011-9072-7

    Article  Google Scholar 

  • Silva SC, Mendes S, Soares Filho WS, Pedrosa-Harand A (2015) Chromosome homologies between Citrus and Poncirus the comparative cytogenetic map of mandarin (Citrus reticulata). Tree Genet Genomes 11:811. https://doi.org/10.1007/s11295-014-0811-4

    Article  Google Scholar 

  • Singhal V, Gill B (1990) Chromosomal studies in some members of Anacardiaceae. J Cytol Genet 25:36–42

    Google Scholar 

  • Stace CA (1991) Plant taxonomy and biosystematics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Takhtajan A (1980) Outline of the classification of flowering plants. Bot Rev 46:226–359

    Article  Google Scholar 

  • Tobe H (2011) Embryological evidence supports the transfer of Leitneria floridana to the family Simaroubaceae. Ann Mo Bot Gard 98:277–293

    Article  Google Scholar 

  • Turczaninow NS (1848) Decades quarta et quinta. Generum adhunc nom descriptorum. Bull Soc Imp Nat Moscou 21:570–591

    Google Scholar 

  • Urdampilleta JD, Souza AP, Forni-Martins ER, Schneider DRS, Vanzela ALL, Ferrucci MS (2009) Molecular and cytogenetic characterization of an AT-rich satellite DNA family in Urvillea chacoensis Hunz. (Paullinieae, Sapindaceae). Genetica 136:171–177

    Article  CAS  Google Scholar 

  • Urdampilleta JD, Coulleri JP, Ferrucci MS, Forni-Martins ER (2012) Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Plant Biol 15:868–881. https://doi.org/10.1111/j.1438-8677.2012.00679.x

    Article  CAS  PubMed  Google Scholar 

  • Vaio M, Nascimento J, Mendes S, Ibiapino A, Felix LP, Gardner A, Emshwiller E, Fiaschi P, Guerra M (2018) Multiple karyotype changes distinguish two closely related species of Oxalis (O. psoraleoides and O. rhombeo-ovata) and suggest an artificial grouping of section Polymorphae (Oxalidaceae). Bot J Linn Soc 188:269–280

    Google Scholar 

  • Webster G, Miller K (1963) Chromosomes and relationships of Leitneria. Am J Bot 50:638

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

    Chapter  Google Scholar