link.springer.com

Soil microbial biomass and community responses to experimental precipitation change: A meta-analysis - Soil Ecology Letters

  • ️Liu, Chengshuai
  • ️Thu May 14 2020

References

  • Adams, D.C., Gurevitch, J., Rosenberg, M.S., 1997. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283.

    Google Scholar 

  • Allison, S.D., Martiny, J.B.H., 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America 105, 11512–11519.

    CAS  Google Scholar 

  • Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent onmicrobial physiology. Nature Geoscience 3, 336–340.

    CAS  Google Scholar 

  • Bachar, A., Al-Ashhab, A., Soares, M., Sklarz, M.Y., Angel, R., Ungar, E.D., Gillor, O., 2010. Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology 60, 453–461.

    Google Scholar 

  • Bailey, V.L., Smith, J.L., Bolton, H. Jr., 2002. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology & Biochemistry 34, 997–1007.

    CAS  Google Scholar 

  • Balser, T.C., Gutknecht, J.L.M., Liang, C., 2010. How Will Climate Change Impact Soil Microbial Communities? In: Dixon, G.R., Tilston, E.L., eds. Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht, pp.373–397.

    Google Scholar 

  • Baquero, O.S., 2017. ggsn: North Symbols and Scale Bars for Maps Created with ‘ggplot2’ or ‘ggmap’. Available at https://CRAN.R-project.org/package=ggsn.

  • Barcenas-Moreno, G., Gomez-Brandon, M., Rousk, J., Baath, E., 2009. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biology 15, 2950–2957.

    Google Scholar 

  • Bell, C.W., Tissue, D.T., Loik, M.E., Wallenstein, M.D., Acosta-Martinez, V., Erickson, R.A., Zak, J.C., 2014. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Global Change Biology 20, 1657–1673.

    Google Scholar 

  • Bintanja, R., Selten, F.M., 2014. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479–482.

    CAS  Google Scholar 

  • Bonan, G.B., Doney, S.C., 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359, 533.

    CAS  Google Scholar 

  • Borken, W., Matzner, E., 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology 15, 808–824.

    Google Scholar 

  • Bouskill, N.J., Lim, H.C., Borglin, S., Salve, R., Wood, T.E., Silver, W. L., Brodie, E.L., 2013. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME Journal 7, 384–394.

    CAS  Google Scholar 

  • Brocca, L.L., Ciabatta, C.M., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani V., 2014. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, D, Atmospheres 119, 5128–5141.

    Google Scholar 

  • Brockett, B.F.T., Prescott, C.E., Grayston, S.J., 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry 44, 9–20.

    CAS  Google Scholar 

  • Brzostek, E.R., Blair, J.M., Dukes, J.S., Frey, S.D., Hobbie, S.E., Melillo, J.M., Mitchell, R.J., Pendall, E., Reich, P.B., Shaver, G.R., Stefanski, A., Tjoelker, M.G., Finzi, A.C., 2012. The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal. Global Change Biology 18, 2617–2625.

    Google Scholar 

  • Buchkowski, R.W., Schmitz, O.J., Bradford, M.A., 2015. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology 96, 1139–1149.

    Google Scholar 

  • Chen, D., Mi, J., Chu, P., Cheng, J., Zhang, L., Pan, Q., Xie, Y., Bai, Y., 2015. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology 30, 1669–1682.

    Google Scholar 

  • Contosta, A.R., Frey, S.D., Cooper, A.B., 2015. Soil microbial communities vary as much over time as with chronic warming and nitrogen additions. Soil Biology & Biochemistry 88, 19–24.

    CAS  Google Scholar 

  • Cregger, M.A., Schadt, C.W., McDowell, N.G., Pockman, W.T., Classena, A.T., 2012. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied and Environmental Microbiology 78, 8587–8594.

    CAS  Google Scholar 

  • Crowther, T.W., Bradford, M.A., 2013. Thermal acclimation in widespread heterotrophic soil microbes. Ecology Letters 16, 469–477.

    Google Scholar 

  • de Martonne, E., 1926. Une nouvelle fanction climatologique: l’indice d’aridite. Meteorologie (Paris) 2, 449–458.

    Google Scholar 

  • de Nijs, E.A., Hicks, L.C., Leizeaga, A., Tietema, A., Rousk, J., 2018. Soil microbial moisture dependences and responses to drying-rewetting: The legacy of 18 years drought. Global Change Biology 25, 1005–1015.

    Google Scholar 

  • Evans, S.E., Wallenstein, M.D., 2012. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109, 101–116.

    Google Scholar 

  • Fierera, N., Schimela, J.P., Holden, P.A., 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology & Biochemistry 35, 167–176.

    Google Scholar 

  • Fu, R., Gartlehner, G., Grant, M., Shamliyan, T., Sedrakyan, A., Wilt, T.J., Griffith, L., Oremus, M., Raina, P., Ismaila, A., Santaguida, P., Lau, J., Trikalinos, T.A., 2011. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. Journal of Clinical Epidemiology 64, 1187–1197.

    Google Scholar 

  • Gallic, E., 2016. legendMap: North arrow and scale bar for ggplot2 graphics. R package version 1.0.

  • Ge, T., Li, B., Zhu, Z., Hu, Y., Yuan, H., Dorodnikov, M., Jones, D.L., Wu, J., Kuzyakov, Y., 2017. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils 53, 37–48.

    CAS  Google Scholar 

  • Glassman, S.I., Weihe, C., Li, J., Albright, M.B.N., Looby, C.I., Martiny, A.C., Treseder, K.K., Allison, S.D., Martiny, J.B.H., 2018. Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences of the United States of America 115:11994–11999.

    CAS  Google Scholar 

  • Griffiths, B.S., Bonkowski, M., Dobson, G., Caul, S., 1999. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43, 297–304.

    CAS  Google Scholar 

  • Griffiths, B.S., Philippot, L., 2012. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews 37, 112–129.

    Google Scholar 

  • Griffiths, R.I., Whiteley, A.S., O’Donnell, A.G., Bailey, M.J., 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-Based microbial community composition. Applied and Environmental Microbiology 12, 5488–5491.

    Google Scholar 

  • Gutknecht, J.L.M., Field, C.B., Balser, T.C., 2012. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biology 18, 2256–2269.

    Google Scholar 

  • Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156.

    Google Scholar 

  • Ho, A., Lonardo, D.P.D., Bodelier, P.L.E., 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology 93, fix006.

    Google Scholar 

  • Holland, E.A., Coleman, D.C., 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68, 425–433.

    Google Scholar 

  • Huang, G., Li, Y., Su, Y.G., 2015. Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, Northwestern China. Soil Biology & Biochemistry 83, 52–56.

    CAS  Google Scholar 

  • Jensen, K.D., Beier, C., Michelsen, A., Emmett, B.A., 2003. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Applied Soil Ecology 24, 165–176.

    Google Scholar 

  • Kaisermann, A., Maron, P.A., Beaumelle, L., Lata, J.C., 2015. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Applied Soil Ecology 86, 158–164.

    Google Scholar 

  • Koricheva, J., Gurevitch, J., 2014. Uses and misuses of meta-analysis in plant ecology. Journal of Ecology 102, 828–844.

    Google Scholar 

  • Kramer, C., Gleixner, G., 2006. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biology & Biochemistry 38, 3267–3278.

    CAS  Google Scholar 

  • Lennon, J.T., Aanderud, Z.T., Lehmkuhl, B.K., Schoolmaster, J.D.R. Jr., 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879.

    Google Scholar 

  • Liu, L., Wang, X., Lajeunesse, M.J., Miao, G., Piao, S., Wan, S., Wu, Y., Wang, Z., Yang, S., Li, P., Deng, M., 2016. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology 22, 1394–1405.

    Google Scholar 

  • Liu, W., Zhang, Z., Wan, S., 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology 15, 184–195.

    Google Scholar 

  • Ma, L., Guo, C., Lü, X., Yuan, S., Wang, R., 2015. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences 12, 2585–2596.

    Google Scholar 

  • Manzoni, S., Schimel, J.P., Porporato, A., 2012. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938.

    Google Scholar 

  • Potthoff, M., Steenwerth, K.L., Jackson, L.E., Drenovsky, R.E., Scow, K.M., Joergensen, R.G., 2006. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry 38, 1851–1860.

    CAS  Google Scholar 

  • Ren, C., Chen, J., Lu, X., Doughty, R., Zhao, F., Zhong, Z., Han, X., Yang, G., Feng, Y., Ren, G., 2018. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology & Biochemistry 116, 4–10.

    CAS  Google Scholar 

  • Romero-Olivares, A.L., Taylor, J.W., Treseder, K.K., 2015. Neuro-spora discreta as a model to assess adaptation of soil fungi to warming. BMC Evolutionary Biology 15, 198.

    Google Scholar 

  • Sayer, E.J., Oliver, A.E., Fridley, J.D., Askew, A.P., Mills, R.T.E., Grime, J.P., 2017. Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. Ecology and Evolution 7, 855–862.

    Google Scholar 

  • Schimel, J., Balser, T.C., Wallenstein, M., 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394.

    Google Scholar 

  • Schimel, J.P., Gulledge, J.M., Clein-Curley, J.S., Lindstrom, J.E., Braddock, J.F., 1999. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology & Biochemistry 31, 831–838.

    CAS  Google Scholar 

  • Schlaepfer, D.R., Bradford, J.B., Lauenroth, W.K., Munson, S.M., Tietjen, B., Hall, S.A., Wilson, S.D., Duniway, M.C., Jia, G., Pyke, D.A., Lkhagva, A., Jamiyansharav, K., 2017. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications 8, 14196.

    CAS  Google Scholar 

  • Strickland, M.S., Rousk, J., 2010. Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biology & Biochemistry 42, 1385–1395.

    CAS  Google Scholar 

  • Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P., Dorigo, W.A., 2012. Afternoon rain more likely over drier soils. Nature 489, 423–426.

    CAS  Google Scholar 

  • Treseder, K.K., Marusenko, Y., Romero-olivares, A.L., Maltz, M.R., 2016. Experimental warming alters potential function of the fungal community in boreal forest. Global Change Biology 22, 3395–3404.

    Google Scholar 

  • Wallenstein, M.D., Hall, E.K., 2012. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109, 35–47.

    Google Scholar 

  • Wallenstein, M.D., McNulty, S., Fernandez, I.J., Boggs, J., Schlesinger, W.H., 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management 222, 459–468.

    Google Scholar 

  • Wei, L., Razavi, B.S., Wang, W., Zhu, Z., Liu, S., Wu, J., Kuzyakov, Y., Ge, T., 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology & Biochemistry 135, 134–143.

    CAS  Google Scholar 

  • Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

    Google Scholar 

  • Zeglin, L.H., Bottomley, P.J., Jumpponen, A., Rice, C.W., Arango, M., Lindsley, A., McGowan, A., Mfombep, P., Myrold, D.D., 2013. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology 94, 2334–2345.

    CAS  Google Scholar 

  • Zhao, C., Miao, Y., Yu, C., Zhu, L., Wang, F., Jiang, L., Hui, D., Wan, S., 2016. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Scientific Reports 6, 24317.

    CAS  Google Scholar 

  • Zhao, Q., Jian, S., Nunan, N., Maestre, F.T., Tedersoo, L., He, J., Wei, H., Tan, X., Shen, W., 2017. Altered precipitation seasonality impacts the dominant fungal but rare bacterial taxa in subtropical forest soils. Biology and Fertility of Soils 53, 231–245.

    Google Scholar 

  • Zhou, Z., Wang, C., Luo, Y., 2018. Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography 27, 1121–1136.

    Google Scholar 

  • Zhu, Z., Ge, T., Luo, Y., Liu, S., Xu, X., Tong, C., Shibistova, O., Guggenberger, G., Wu, J., 2018. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology & Biochemistry 121, 67–76

    CAS  Google Scholar 

Download references