mathworld.wolfram.com

Cevian Triangle -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

CevianTriangle

Given a point P and a triangle DeltaABC, the Cevian triangle DeltaA^'B^'C^' is defined as the triangle composed of the endpoints of the cevians though the Cevian point P. A triangle and its Cevian triangle are therefore perspective with respect to the Cevian point. If the point P has trilinear coordinates alpha:beta:gamma, then the Cevian triangle has trilinear vertex matrix

 [0 beta gamma; alpha 0 gamma; alpha beta 0]

(1)

(Kimberling 1998, pp. 55 and 185), and is a central triangle of type 1 (Kimberling 1998, p. 55).

The following table summarizes a number of special Cevian triangles for various special Cevian points P.

If A^'B^'C^' is the Cevian triangle of X and A^('')B^('')C^('') is the anticevian triangle, then X and A^('') are harmonic conjugates with respect to A and A^'.

The side lengths of the Cevian triangle with respect to a Cevian point alpha:beta:gamma are given by

The area of the Cevian triangle of DeltaABC with respect to the center with trilinear coordinates P=alpha:beta:gamma is given by

 Delta^'=(2abc|alphabetagamma|)/(|(aalpha+bbeta)(aalpha+cgamma)(bbeta+cgamma)|)Delta,

(5)

where Delta is the area of triangle DeltaABC.

CevianTriangleTheorems

If DeltaA^'B^'C^' is the Cevian triangle of DeltaABC, then the triangle DeltaA^('')B^('')C^('') obtained by reflecting A^', B^', and C^' across the midpoints of their sides is also a Cevian triangle of DeltaABC (Honsberger 1995, p. 141; left figure). Furthermore, if the Cevian circle crosses the sides of DeltaABC in three points A^(''), B^(''), and C^(''), then DeltaA^('')B^('')C^('') is also a Cevian triangle of DeltaABC (Honsberger 1995, pp. 141-142; right figure).


See also

Anticevian Triangle, Cevian, Cevian Circle, Cevian Point

Explore with Wolfram|Alpha

References

Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 141-143, 1995.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Referenced on Wolfram|Alpha

Cevian Triangle

Cite this as:

Weisstein, Eric W. "Cevian Triangle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CevianTriangle.html

Subject classifications