mathworld.wolfram.com

Dirichlet Divisor Problem -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

Let the divisor function d(n) be the number of divisors of n (including n itself). For a prime p, d(p)=2. In general,

 sum_(k=1)^nd(k)=nlnn+(2gamma-1)n+O(n^theta),

where gamma is the Euler-Mascheroni constant. Dirichlet originally gave theta approx 1/2 (Hardy and Wright 1979, p. 264; Hardy 1999, pp. 67-68), and Hardy and Landau showed in 1916 that theta>=1/4 (Hardy 1999, p. 81). The following table summarizes incremental progress on the upper limit (updating Hardy 1999, p. 81).

thetaapprox.citation
1/20.50000Dirichlet
1/30.33333Voronoi (1903), Sierpiński (1906), van der Corput (1923)
37/1120.33036Littlewood and Walfisz (1925)
33/1000.33000van der Corput (1922)
27/820.32927van der Corput (1928)
15/460.32609
12/370.32432Chen (1963), Kolesnik (1969)
35/1080.32407Kolesnik (1982)
139/4290.32401Kolesnik
17/530.32075Vinogradov (1935)
7/220.31818Iwaniec and Mozzochi (1988)
23/730.31507Huxley (1993)
131/4160.31490Huxley (2003)

See also

Divisor Function, Gauss's Circle Problem

Explore with Wolfram|Alpha

References

Bohr, H. and Cramér, H. "Ellipsoidprobleme." In "Die neuere Entwicklung der analytischen Zahlentheorie." Ch. IIC88 in Enzykl. d. Math. Wiss., Vol. 2, Part 3, Issue 2 II C 8, 823-824, 1922.Chen, J.-R. "The Lattice-Points in a Circle." Sci. Sinica 12, 633-649, 1963.Graham, S. W. and Kolesnik, G. Van Der Corput's Method of Exponential Sums. Cambridge, England: Cambridge University Press, 1991.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Huxley, M. N. "Exponential Sums and Lattice Points." Proc. London Math. Soc. 60, 471-502, 1990.Huxley, M. N. "Corrigenda: 'Exponential Sums and Lattice Points.' " Proc. London Math. Soc. 66, 70, 1993.Huxley, M. N. "Exponential Sums and Lattice Points. II." Proc. London Math. Soc. 66, 279-301, 1993.Huxley, M. N. "Exponential Sums and Lattice Points III." Proc. London Math. Soc. 87, 5910-609, 2003.Iwaniec, H. and Mozzochi, C. J. "On the Divisor and Circle Problem." J. Numb. Th. 29, 60-93, 1988.Kolesnik, G. A. "An Improvement of the Remainder Term in the Divisor Problem." Mat. Zametki 6, 545-554, 1969. English translation in Math. Notes 6, 784-791, 1969.Kolesnik, G. "On the Order of zeta(1/2+it) and Delta(R)." Pacific J. Math. 98, 107-122, 1982.Littlewood, J. E. and Walfisz, A. "The Lattice Points of a Circle. (With a Note by Prof. E. Landau.)." Proc. Roy. Soc. London (A) 106, 478-488, 1925.van der Corput, J. G. "Zum Teilerproblem." Math. Ann. 98, 697-716, 1928.Vinogradov, I. M. "Anzahl der Gitterpunkte in der Kugel." Traveaux Inst. Phys.-Math. Stekloff (Leningrade) 9, 17-38, 1935. [Russian].

Referenced on Wolfram|Alpha

Dirichlet Divisor Problem

Cite this as:

Weisstein, Eric W. "Dirichlet Divisor Problem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DirichletDivisorProblem.html

Subject classifications