mathworld.wolfram.com

Trilinear Polar -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
  • ️Sun Nov 14 2004
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

Given a triangle center X=l:m:n, the line

 mnalpha+nlbeta+lmgamma=0,

where alpha:beta:gamma are trilinear coordinates, is called the trilinear polar (Kimberling 1998, p. 38).

The isogonal conjugate X^(-1)=l^(-1):m^(-1):n^(-1) of X therefore has trilinear polar

 lalpha+mbeta+ngamma=0.

The following table gives the trilinear polars of a number of triangle centers.

The trilinear polar of P is the perspectrix of the Cevian triangle of P and the reference triangle DeltaABC.


See also

Chasles's Polars Theorem, Isogonal Conjugate, Polar, Trilinear Pole

Explore with Wolfram|Alpha

References

Coxeter, H. S. M. The Real Projective Plane, 3rd ed. Cambridge, England: Cambridge University Press, 1993.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Referenced on Wolfram|Alpha

Trilinear Polar

Cite this as:

Weisstein, Eric W. "Trilinear Polar." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TrilinearPolar.html

Subject classifications