monoidal monad (Rev #18, changes) in nLab
Showing changes from revision #17 to #18: Added | Removed | Changed
Context
Higher algebra
Algebraic theories
Algebras and modules
Higher algebras
-
symmetric monoidal (∞,1)-category of spectra
Model category presentations
Geometry on formal duals of algebras
Theorems
Monoidal categories
With braiding
With duals for objects
-
category with duals (list of them)
-
dualizable object (what they have)
-
ribbon category, a.k.a. tortile category
With duals for morphisms
-
monoidal dagger-category?
With traces
Closed structure
Special sorts of products
Semisimplicity
Morphisms
Internal monoids
Examples
Theorems
In higher category theory
2-Category theory
Definitions
Transfors between 2-categories
Morphisms in 2-categories
Structures in 2-categories
Limits in 2-categories
Structures on 2-categories
Contents
Definition
Tensorial strengths and commutative monads
As a preliminary, let VV be a monoidal category. We say a functor T:V→VT \colon V \to V is strong if there are given left and right tensorial strengths
τ A,B:A⊗T(B)→T(A⊗B)\tau_{A, B} \colon A \otimes T(B) \to T(A \otimes B)
\,
σ A,B:T(A)⊗B→T(A⊗B).\sigma_{A, B} \colon T(A) \otimes B \to T(A \otimes B).
which are suitably compatible with one another. The full set of coherence conditions may be summarized by saying TT preserves the two-sided monoidal action of VV on itself, in an appropriate 2-categorical sense. More precisely: the two-sided action of VV on itself is a lax functor of 2-categories
V˜:BV×(BV) op→Cat\tilde{V} \colon B V \times (B V)^{op} \to Cat
(BVB V is the one-object 2-category associated with a monoidal category VV, and (BV) op(B V)^{op} is the same 2-category but with 1-cell composition (= tensoring) in reverse order), and the two-sided strength means we have a structure of lax natural transformation V˜→V˜\tilde{V} \to \tilde{V}.
There is a category of strong functors V→VV \to V, where the morphisms are transformations λ:S→T\lambda \colon S \to T which are compatible with the strengths in the obvious sense. Under composition, this is a strict monoidal category.
Definition
Monoids in this monoidal category are called strong monads.
Definition
A strong monad (T:V→V,m:TT→T,u:1→T)(T \colon V \to V, m \colon T T \to T, u: 1 \to T) (def. 2) is a commutative monad if there is an equality of natural transformations α=β\alpha = \beta where
-
α\alpha is the composite
TA⊗TB→σ A,TBT(A⊗TB)→T(τ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B).T A \otimes T B \stackrel{\sigma_{A, T B}}{\to} T(A \otimes T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B).
-
β\beta is the composite
TA⊗TB→τ TA,BT(TA⊗B)→T(σ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B).T A \otimes T B \stackrel{\tau_{T A, B}}{\to} T(T A \otimes B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B).
From monoidal monads to commutative monads
Let (T:V→V,u:1→T,m:TT→T)(T \colon V \to V, u \colon 1 \to T, m \colon T T \to T) be a monoidal monad, with structural constraints on the underlying functor denoted by
α A,B:T(A)⊗T(B)→T(A⊗B),ι=uI:I→T(I).\alpha_{A, B} \colon T(A) \otimes T(B) \to T(A \otimes B), \qquad \iota = u I: I \to T(I).
Define strengths on both the left and the right by
τ A,B=(A⊗T(B)→uA⊗1T(A)⊗T(B)→α A,BT(A⊗B)),\tau_{A, B} = (A \otimes T(B) \stackrel{u A \otimes 1}{\to} T(A) \otimes T(B) \stackrel{\alpha_{A, B}}{\to} T(A \otimes B)),
\,
σ A,B=(T(A)⊗B→1⊗uBT(A)⊗T(B)→α A,BT(A⊗B)).\sigma_{A, B} = (T(A) \otimes B \stackrel{1 \otimes u B}{\to} T(A) \otimes T(B) \stackrel{\alpha_{A, B}}{\to} T(A \otimes B)).
Proposition
(m:TT→T,u:1→T)(m \colon T T \to T, u \colon 1 \to T) is a commutative monad.
Proof
In fact, the two composites
TA⊗TB→σ A,TBT(A⊗TB)→T(τ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B)T A \otimes T B \stackrel{\sigma_{A, T B}}{\to} T(A \otimes T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B)
\,
TA⊗TB→τ TA,BT(TA⊗B)→T(σ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B)T A \otimes T B \stackrel{\tau_{T A, B}}{\to} T(T A \otimes B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B)
are both equal to α A,B\alpha_{A, B}. We show this for the second composite; the proof is similar for the first. If α T\alpha_T denotes the monoidal constraint for TT and α TT\alpha_{T T} the constraint for the composite TTT T, then by definition α TT\alpha_{T T} is the composite given by
TTX⊗TTY→α TTT(TX⊗TY)→Tα TTT(X⊗Y)T T X \otimes T T Y \stackrel{\alpha_T T}{\to} T(T X \otimes T Y) \stackrel{T\alpha_T}{\to} T T(X \otimes Y)
and so, using the properties of monoidal monads, we have a commutative diagram
TTX⊗TY →α T T(TX⊗Y) u⊗1↗ ↓ 1⊗Tu ↓ T(1⊗u) TX⊗TY →u⊗Tu TTX⊗TTY →α TT T(TX⊗TY) 1↘ ↓ m⊗m ↘ α TT ↓ Tα T TX⊗TY TT(X⊗Y) α T↘ ↓ m T(X⊗Y)\array{ & & T T X \otimes T Y & \stackrel{\alpha_T}{\to} & T(T X \otimes Y) \\ & ^\mathllap{u \otimes 1} \nearrow & \downarrow^\mathrlap{1 \otimes T u} & & \downarrow^\mathrlap{T(1 \otimes u)} \\ T X \otimes T Y & \stackrel{u \otimes T u}{\to} & T T X \otimes T T Y & \stackrel{\alpha_T T}{\to} & T(T X \otimes T Y) \\ & ^\mathllap{1} \searrow & \downarrow^\mathrlap{m \otimes m} & \searrow^\mathrlap{\alpha_{T T}} & \downarrow^\mathrlap{T\alpha_T} \\ & & T X \otimes T Y & & T T(X \otimes Y) \\ & & & ^\mathllap{\alpha_T} \searrow & \downarrow^\mathrlap{m} \\ & & & & T(X \otimes Y) }
which completes the proof.
Functoriality of the correspondence
The correspondence between monoidal monads and commutative monads is functorial. More precisely,
For a reference, see FPR ‘19, Proposition C.5.
Tensor product of algebras and multimorphisms
See here.
Monoidal structure on the Kleisli category
The Kleisli category of a monoidal monad TT on CC inherits the monoidal structure from CC. In particular, the tensor product is given
- On objects, by the tensor product ⊗\otimes of CC;
- On morphisms, given k:X→TAk:X\to TA and h:Y→TBh:Y\to TB, their product is the map X⊗Y→T(A⊗B)X\otimes Y \to T(A\otimes B) obtained by the composition \begin{tikzcd} X\otimes Y \ar{r}{f\otimes g} & TA \otimes TB \ar{r}{\nabla} & T(A\otimes B), \end{tikzcd} where ∇\nabla is the monoidal multiplication of TT.
- The associator and unitor are induced by those of CC.
Examples
See examples of commutative monads.
See also
References
-
Anders Kock, Monads on symmetric monoidal closed categories, Arch. Math. 21 (1970), 1–10.
-
Anders Kock, Strong functors and monoidal monads, Arhus Universitet, Various Publications Series No. 11 (1970). PDF.
-
Anders Kock, Closed categories generated by commutative monads (pdf)
-
H. Lindner, Commutative monads in Deuxiéme colloque sur l’algébre des catégoriesDeuxiéme colloque sur l’algébre des catégories. Amiens-1975. Résumés des conférences, pages 283-288. Cahiers de topologie et géométrie différentielle catégoriques, tome 16, nr. 3, 1975.
-
William Keigher, Symmetric monoidal closed categories generated by commutative adjoint monads, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 19 no. 3 (1978), p. 269-293 (NUMDAM, pdf)
-
Gavin J. Seal, Tensors, monads and actions (arXiv:1205.0101)
-
Martin Brandenburg, Tensor categorical foundations of algebraic geometry (arXiv:1410.1716)
A statement in the text appears in Appendix C of
- Tobias Fritz, Paolo Perrone and Sharwin Rezagholi, Probability, valuations, hyperspace: Three monads on Top and the support as a morphism, 2019 (arXiv:1910.03752)
Revision on November 30, 2021 at 21:40:58 by varkor See the history of this page for a list of all contributions to it.