ncatlab.org

monoidal monad (Rev #18, changes) in nLab

Showing changes from revision #17 to #18: Added | Removed | Changed

Context

Higher algebra

higher algebra

universal algebra

Algebraic theories

Algebras and modules

Higher algebras

Model category presentations

Geometry on formal duals of algebras

Theorems

Monoidal categories

monoidal categories

With braiding

With duals for objects

With duals for morphisms

With traces

Closed structure

Special sorts of products

Semisimplicity

Morphisms

Internal monoids

Examples

Theorems

In higher category theory

2-Category theory

2-category theory

Definitions

Transfors between 2-categories

Morphisms in 2-categories

Structures in 2-categories

Limits in 2-categories

Structures on 2-categories

Contents

Definition

Tensorial strengths and commutative monads

As a preliminary, let VV be a monoidal category. We say a functor T:V→VT \colon V \to V is strong if there are given left and right tensorial strengths

τ A,B:A⊗T(B)→T(A⊗B)\tau_{A, B} \colon A \otimes T(B) \to T(A \otimes B)

\,

σ A,B:T(A)⊗B→T(A⊗B).\sigma_{A, B} \colon T(A) \otimes B \to T(A \otimes B).

which are suitably compatible with one another. The full set of coherence conditions may be summarized by saying TT preserves the two-sided monoidal action of VV on itself, in an appropriate 2-categorical sense. More precisely: the two-sided action of VV on itself is a lax functor of 2-categories

V˜:BV×(BV) op→Cat\tilde{V} \colon B V \times (B V)^{op} \to Cat

(BVB V is the one-object 2-category associated with a monoidal category VV, and (BV) op(B V)^{op} is the same 2-category but with 1-cell composition (= tensoring) in reverse order), and the two-sided strength means we have a structure of lax natural transformation V˜→V˜\tilde{V} \to \tilde{V}.

There is a category of strong functors V→VV \to V, where the morphisms are transformations λ:S→T\lambda \colon S \to T which are compatible with the strengths in the obvious sense. Under composition, this is a strict monoidal category.

Definition

Monoids in this monoidal category are called strong monads.

Definition

A strong monad (T:V→V,m:TT→T,u:1→T)(T \colon V \to V, m \colon T T \to T, u: 1 \to T) (def. 2) is a commutative monad if there is an equality of natural transformations α=β\alpha = \beta where

  • α\alpha is the composite

    TA⊗TB→σ A,TBT(A⊗TB)→T(τ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B).T A \otimes T B \stackrel{\sigma_{A, T B}}{\to} T(A \otimes T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B).

  • β\beta is the composite

    TA⊗TB→τ TA,BT(TA⊗B)→T(σ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B).T A \otimes T B \stackrel{\tau_{T A, B}}{\to} T(T A \otimes B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B).

From monoidal monads to commutative monads

Let (T:V→V,u:1→T,m:TT→T)(T \colon V \to V, u \colon 1 \to T, m \colon T T \to T) be a monoidal monad, with structural constraints on the underlying functor denoted by

α A,B:T(A)⊗T(B)→T(A⊗B),ι=uI:I→T(I).\alpha_{A, B} \colon T(A) \otimes T(B) \to T(A \otimes B), \qquad \iota = u I: I \to T(I).

Define strengths on both the left and the right by

τ A,B=(A⊗T(B)→uA⊗1T(A)⊗T(B)→α A,BT(A⊗B)),\tau_{A, B} = (A \otimes T(B) \stackrel{u A \otimes 1}{\to} T(A) \otimes T(B) \stackrel{\alpha_{A, B}}{\to} T(A \otimes B)),

\,

σ A,B=(T(A)⊗B→1⊗uBT(A)⊗T(B)→α A,BT(A⊗B)).\sigma_{A, B} = (T(A) \otimes B \stackrel{1 \otimes u B}{\to} T(A) \otimes T(B) \stackrel{\alpha_{A, B}}{\to} T(A \otimes B)).

Proposition

(m:TT→T,u:1→T)(m \colon T T \to T, u \colon 1 \to T) is a commutative monad.

Proof

In fact, the two composites

TA⊗TB→σ A,TBT(A⊗TB)→T(τ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B)T A \otimes T B \stackrel{\sigma_{A, T B}}{\to} T(A \otimes T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B)

\,

TA⊗TB→τ TA,BT(TA⊗B)→T(σ A,B)TT(A⊗B)→m(A⊗B)T(A⊗B)T A \otimes T B \stackrel{\tau_{T A, B}}{\to} T(T A \otimes B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B)

are both equal to α A,B\alpha_{A, B}. We show this for the second composite; the proof is similar for the first. If α T\alpha_T denotes the monoidal constraint for TT and α TT\alpha_{T T} the constraint for the composite TTT T, then by definition α TT\alpha_{T T} is the composite given by

TTX⊗TTY→α TTT(TX⊗TY)→Tα TTT(X⊗Y)T T X \otimes T T Y \stackrel{\alpha_T T}{\to} T(T X \otimes T Y) \stackrel{T\alpha_T}{\to} T T(X \otimes Y)

and so, using the properties of monoidal monads, we have a commutative diagram

TTX⊗TY →α T T(TX⊗Y) u⊗1↗ ↓ 1⊗Tu ↓ T(1⊗u) TX⊗TY →u⊗Tu TTX⊗TTY →α TT T(TX⊗TY) 1↘ ↓ m⊗m ↘ α TT ↓ Tα T TX⊗TY TT(X⊗Y) α T↘ ↓ m T(X⊗Y)\array{ & & T T X \otimes T Y & \stackrel{\alpha_T}{\to} & T(T X \otimes Y) \\ & ^\mathllap{u \otimes 1} \nearrow & \downarrow^\mathrlap{1 \otimes T u} & & \downarrow^\mathrlap{T(1 \otimes u)} \\ T X \otimes T Y & \stackrel{u \otimes T u}{\to} & T T X \otimes T T Y & \stackrel{\alpha_T T}{\to} & T(T X \otimes T Y) \\ & ^\mathllap{1} \searrow & \downarrow^\mathrlap{m \otimes m} & \searrow^\mathrlap{\alpha_{T T}} & \downarrow^\mathrlap{T\alpha_T} \\ & & T X \otimes T Y & & T T(X \otimes Y) \\ & & & ^\mathllap{\alpha_T} \searrow & \downarrow^\mathrlap{m} \\ & & & & T(X \otimes Y) }

which completes the proof.

Functoriality of the correspondence

The correspondence between monoidal monads and commutative monads is functorial. More precisely,

For a reference, see FPR ‘19, Proposition C.5.

Tensor product of algebras and multimorphisms

See here.

Monoidal structure on the Kleisli category

The Kleisli category of a monoidal monad TT on CC inherits the monoidal structure from CC. In particular, the tensor product is given

  • On objects, by the tensor product ⊗\otimes of CC;
  • On morphisms, given k:X→TAk:X\to TA and h:Y→TBh:Y\to TB, their product is the map X⊗Y→T(A⊗B)X\otimes Y \to T(A\otimes B) obtained by the composition \begin{tikzcd} X\otimes Y \ar{r}{f\otimes g} & TA \otimes TB \ar{r}{\nabla} & T(A\otimes B), \end{tikzcd} where ∇\nabla is the monoidal multiplication of TT.
  • The associator and unitor are induced by those of CC.

Examples

See examples of commutative monads.

See also

References

  • Anders Kock, Monads on symmetric monoidal closed categories, Arch. Math. 21 (1970), 1–10.

  • Anders Kock, Strong functors and monoidal monads, Arhus Universitet, Various Publications Series No. 11 (1970). PDF.

  • Anders Kock, Closed categories generated by commutative monads (pdf)

  • H. Lindner, Commutative monads in Deuxiéme colloque sur l’algébre des catégoriesDeuxiéme colloque sur l’algébre des catégories. Amiens-1975. Résumés des conférences, pages 283-288. Cahiers de topologie et géométrie différentielle catégoriques, tome 16, nr. 3, 1975.

  • William Keigher, Symmetric monoidal closed categories generated by commutative adjoint monads, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 19 no. 3 (1978), p. 269-293 (NUMDAM, pdf)

  • Gavin J. Seal, Tensors, monads and actions (arXiv:1205.0101)

  • Martin Brandenburg, Tensor categorical foundations of algebraic geometry (arXiv:1410.1716)

A statement in the text appears in Appendix C of

Revision on November 30, 2021 at 21:40:58 by varkor See the history of this page for a list of all contributions to it.