D=11 N=1 supergravity in nLab
- ️Invalid Date
Context
Gravity
Formalism
Definition
Spacetime configurations
Properties
Spacetimes
Quantum theory
String theory
Ingredients
Critical string models
Extended objects
Topological strings
Backgrounds
Phenomenology
Physics
physics, mathematical physics, philosophy of physics
Surveys, textbooks and lecture notes
theory (physics), model (physics)
experiment, measurement, computable physics
-
-
-
Axiomatizations
-
Tools
-
Structural phenomena
-
Types of quantum field thories
-
Contents
- Idea
- 11d-SuGra from Super C-Field Flux Quantization
- The action functional
- Kinetic terms
- The higher Chern-Simons term
- Higher curvature corrections
- The hidden deformation
- BPS states
- Related concepts
- References
- General
- Duality-symmetric formulation
- Classical solutions and BPS states
- Higher curvature corrections to D=11D=11 supergravity
- Via 11d superspace cohomology
- Via superparticle scattering in 11d
- Via exceptional geometry
- Via lifting 10d stringy corrections
- Via the ABJM M2-brane model
- See also
- Scattering amplitudes and Effective action
- Truncations and compactifications
- Topology and anomaly cancellation
- Description by exceptional generalized geometry
Idea
N=1N=1 supergravity in d=11d = 11.
for the moment see the respective section at D'Auria-Fre formulation of supergravity
11d-SuGra from Super C-Field Flux Quantization
We discuss (Thm. below, following GSS24, §3) how the equations of motion of D=11 supergravity — on an 11|3211\vert\mathbf{32}-dimensional super-torsion-free super spacetime XX with super vielbein (e,ψ)(e,\psi) (the graviton/gravitino-fields) — follow from just the requirement that the duality-symmetric super-C-field flux densities (G 4 s,G 7 s)∈Ω dR 4(X)×Ω dR 7(X)(G_4^s, G_7^s) \,\in\, \Omega^4_{dR}(X) \times \Omega^7_{dR}(X):
-
satisfy their Bianchi identities
(1)dG 4 s=0 dG 7 s=12G 4 sG 4 s \begin{array}{l} \mathrm{d} \, G_4^s \;=\; 0 \\ \mathrm{d} \, G_7^s \;=\; \tfrac{1}{2} G_4^s \, G_4^s \end{array}
-
are on any super-chart U↪XU \hookrightarrow X of the locally supersymmetric form
(2)G 4 s=14!(G 4) a 1⋯a 4e a 1⋯e a 4−12(ψ¯Γ a 1a 2ψ)e a 1e a 2 G 7 s=17!(G 7) a 1⋯a 7e a 1⋯e a 7−15!(ψ¯Γ a 1⋯a 5ψ)e a 1⋯e a 5. \begin{array}{l} G_4^s \;=\; \tfrac{1}{4!} (G_4)_{a_1 \cdots a_4} e^{a_1} \cdots e^{a_4} \,-\, \tfrac{1}{2} \big(\overline{\psi}\Gamma_{a_1 a_2} \psi\big) e^{a_1} \, e^{a_2} \\ G_7^s \;=\; \tfrac{1}{7!} (G_7)_{a_1 \cdots a_7} e^{a_1} \cdots e^{a_7} \,-\, \tfrac{1}{5!} \big(\overline{\psi}\Gamma_{a_1 \cdots a_5} \psi\big) e^{a_1} \cdots e^{a_5} \mathrlap{\,.} \end{array}
Up to some mild (but suggestive, see below) re-arrangement, the computation is essentially that indicated in CDF91, §III.8.5 (where some of the easy checks are indicated) which in turn is a mild reformulation of the original claim in Cremmer & Ferrara 1980 and Brink & Howe 1980 (where less details were given). A full proof is laid out in GSS24, §3, whose notation we follow here.
The following may be understood as an exposition of this result, which seems to stand out as the only account that is (i) fully first-order and (ii) duality-symmetric (in that G 7G_7 enters the EoMs as an independent field, whose Hodge duality to G 4G_4 is imposed by the Bianchi identity for G 7 sG_7^s, remarkably).
Notice that the discussion in CDF91, §III.8 amplifies the superspace-rheonomy principle as a constraint that makes the Bianchi identities on (in our paraphrase) a supergravity Lie 6-algebra-valued higher vielbein be equivalent to the equations of motion of D=11 SuGra. But we may observe that the only rheonomic constraint necessary is that (2) on the C-field flux density — and this is the one not strictly given by rules in CDF91, p. 874, cf. around CDF91, (III.8.41) —; while the remaining rheonomy condition on the gravitino field strength ρ\rho is implied (Lem. below), and the all-important torsion constraint (3) (which is also outside the rules of rheonomy constraints, cf. CDF91, (III.8.33)) is naturally regarded as part of the definition of a super-spacetime in the first place (Def. below).
In thus recasting the formulation of the theorem somewhat, we also:
-
re-define the super-flux densities as above (2), highlighting that it is (only) in this combination that the algebraic form of the expected Bianchi identity (1) extends to superspace;
-
disregard the gauge potentials C 3C_3 and C 6C_6, whose role in CDF91, §III.8.2-4 is really just to motivate the form of the Bianchi identities equivalent to (1), but whose global nature is more subtle than acknowledged there, while being irrelevant for just the equations of motion.
Indeed, the point is that, in consequence of our second item above, the following formulation shows that one may apply flux quantization of the supergravity C-field on superspace in formally the same way as bosonically (for instance in Cohomotopy as per Hypothesis H, or in any other nonabelian cohomology theory whose classifying space has the ℚ\mathbb{Q}-Whitehead L ∞ L_\infty -algebra of the 4-sphere), and in fact that the ability to do so implies the EoMs of 11d SuGra. Any such choice of flux quantization is then what defines, conversely, the gauge potentials, globally. Moreover, by the fact brought out here, that the super-flux Bianchi identity already implies the full equations of motion, this flux quantization is thereby seen to be compatible with the equations of motion on all of super spacetime.
For the present formulation, we find it suggestive to regard the all-important torsion constraint (3) as part of the definition of the super-gravity field itself (since it ties the auxiliary spin-connection to the super-vielbein field which embodies the actual super-metric structure):
Definition
(super-spacetime)
For
-
D∈ℕ ≥1D \in \mathbb{N}_{\geq 1} a natural number
-
N∈Rep ℝ(Spin(1,D−1))\mathbf{N} \in Rep_{\mathbb{R}}\big(Spin(1,D-1)\big) a real spin representation (“Majorana spinors”) of ℝ\mathbb{R}-dimension NN
whose Spin ( 1 , D ) Spin(1,D) -equivariant bilinear pairing we denote
(-)¯(-):N⊗N⟶ℝ 1,D−1, \overline{(\text{-})}(\text{-}) \;\colon\; \mathbf{N} \otimes \mathbf{N} \longrightarrow \mathbb{R}^{1,D-1} \,,
by a super-spacetime of super-dimension D|ND\vert \mathbf{N} we here mean:
-
which admits an open cover by super-Minkowski supermanifolds ℝ 1,D−1|N\mathbb{R}^{1,D-1\vert \mathbf{N}},
-
equipped with a super Cartan connection with respect to the canonical subgroup inclusion Spin(1,D−1)↪Iso(ℝ 1,D−1|N)Spin(1,D-1) \hookrightarrow Iso(\mathbb{R}^{1,D-1\vert\mathbf{N}}) of the spin group into the super Poincaré group, namely:
-
equipped with a super-vielbein (e,ψ)(e, \psi), hence on each super-chart U↪XU \hookrightarrow X
((e a) a=0 D=1,(ψ α) α=1 N)∈Ω dR 1(U;ℝ 1,D−1|N) \big( (e^a)_{a=0}^{D=1} ,\, (\psi^\alpha)_{\alpha=1}^N \big) \;\in\; \Omega^1_{dR}\big( U ;\, \mathbb{R}^{1,D-1\vert \mathbf{N}} \big)
such that at every point x∈X⇝x \in \overset{\rightsquigarrow}{X} the induced map on tangent spaces is an isomorphism
(e,ψ) x:T xX⟶∼ℝ 1,10|N. (e,\psi)_x \;\colon\; T_x X \overset{\sim}{\longrightarrow} \mathbb{R}^{1,10\vert \mathbf{N}} \,.
-
and with a spin-connection ω\omega (…),
-
-
such that the super-torsion vanishes, in that on each chart:
(3)de a−ω a be b=(ψ¯Γ aψ), \mathrm{d} \, e^a - \omega^a{}_b \, e^b \;=\; \big( \overline{\psi} \,\Gamma^a\, \psi \big) \,,
where Γ (−):ℝ 1,D−1⟶End ℝ(N)\Gamma^{(-)} \,\colon\, \mathbb{R}^{1,D-1} \longrightarrow End_{\mathbb{R}}(\mathbf{N}) is a representation of Pin + ( 1 , 10 ) Pin^+(1,10) , hence
Γ aΓ b+Γ bΓ a=+2diag(−,+,+,⋯,+) ab. \Gamma_{a} \Gamma_b + \Gamma_{b} \Gamma_a \;=\; + 2\, diag(-, +, +, \cdots, +)_{a b} \,.
Definition
(the gravitational field strength)
Given a super-spacetime (Def. ), we say that (super chart-wise):
-
its super-torsion is:
T a≔de a−ω a be b−(ψ¯Γ aψ) T^a \;\coloneqq\; \mathrm{d}\, e^a \,-\, \omega^a{}_b \, e^b \,-\, \big( \overline{\psi}\Gamma^a\psi \big)
-
its gravitino field strength is
ρ≔dψ+14ω abΓ abψ, \rho \;\coloneqq\; \mathrm{d}\, \psi + \tfrac{1}{4} \omega_{a b}\Gamma^{a b}\psi \,,
-
its curvature is
R a b≔dω a b−ω a cω c b. R^{a}{}_b \;\coloneqq\; \mathrm{d}\, \omega^{a}{}_b \,-\, \omega^a{}_c \, \omega^c{}_b \,.
Lemma
(super-gravitational Bianchi identities)
By exterior calculus the gravitational field strength tensors (Def. ) satisfy the following identities:
(4)dR a b = ω a a′R a′ b−R a b′ω b′ b dT a = −R a be b+2(ψ¯Γ aρ) dρ = 14R abΓ abψ \begin{array}{ccl} \mathrm{d} \, R^{a}{}_b &=& \omega^a{}_{a'} \, R^{a'}{}_b - R^{a}{}_{b'} \, \omega^{b'}{}_{b} \\ \mathrm{d} \, T^a &=& - R^{a}{}_b \ e^b + 2 \big( \overline{\psi} \,\Gamma^a\, \rho \big) \\ \mathrm{d} \, \rho &=& \tfrac{1}{4} R^{a b} \Gamma_{a b} \psi \end{array}
Write now 32∈Rep ℝ(Spin(1,10))\mathbf{32} \in Rep_{\mathbb{R}}\big(Spin(1,10)\big) for the unique non-trivial irreducible real Spin ( 1 , 10 ) Spin(1,10) -representation.
Theorem
(11d SuGra EoM from super-flux Bianchi identity) Given
-
(super-gravity field:) an 11|3211\vert\mathbf{32}-dimensional super-spacetime XX (Def. ),
-
(super-C-field flux densities:) (G 4 s,G 7 s)(G^s_4,\, G^s_7) as in (2)
then the super-flux Bianchi identity (1) (the super-higher Maxwell equation for the C-field)
dG 4 s=0 dG 7 s=12G 4 sG 4 s \begin{array}{l} \mathrm{d} \, G_4^s \;=\; 0 \\ \mathrm{d} \, G_7^s \;=\; \tfrac{1}{2} G_4^s \, G_4^s \end{array}
is equivalent to the joint solution by (e,ψ,ω,G 4 s,G 7 s)\big(e, \psi, \omega, G_4^s,\, G_7^s\big) of the equations of motion of D=11 supergravity.
This is, in some paraphrase, the result of CDF91, §III.8.5, We indicate the proof broken up in the following Lemmas , , and .
In all of the following lemmas one expands the Bianchi identoties in their super-vielbein form components.
Lemma
The Bianchi identity for G 4 sG^s_4 (1) is equivalent to
-
the closure of the ordinary 4-flux density G 4G_4
-
the following dependence of ρ\rho on G 4G_4
shown in any super-chart:
(5)dG 4 s=0 ⇔{(∇ a(G 4) a 1⋯a 4)e ae a 1⋯e a 4=0 ρ=ρ abe ae b+(1613!(G 4) ab 1b 2b 3Γ ab 1b 2b 3−11214!(G 4) b 1⋯b 4Γ ab 1⋯b 4)⏟H aψe a (14!ψ α∇ α(G 4) a 1⋯a 4+(ψ¯Γ a 1a 2ρ a 3a 4))e a 1⋯e a 4=0. \begin{array}{l} \mathrm{d}\, G^s_4 \;=\; 0 \\ \;\Leftrightarrow\; \left\{ \begin{array}{l} \big( \nabla_{a} (G_4)_{a_1 \cdots a_4} \big) e^{a} \, e^{a_1} \cdots e^{a_4} \;=\; 0 \\ \rho \;=\; \rho_{a b} \, e^{a} \, e^b \,+\, \underset{ H_a }{ \underbrace{ \Big( \tfrac{1}{6} \, \tfrac{1}{3!} (G_4)_{a b_1 b_2 b_3} \,\Gamma^{a b_1 b_2 b_3}\, \, - \tfrac{1}{12} \, \tfrac{1}{4!} (G_4)_{b_1 \cdots b_4} \,\Gamma^{a b_1 \cdots b_4}\, \Big) } } \psi \, e^a \\ \Big( \tfrac{1}{4!} \psi^\alpha \nabla_\alpha (G_4)_{a_1 \cdots a_4} \;+\; \big( \overline{\psi} \Gamma_{a_1 a_2} \rho_{a_3 a_4} \big) \Big) e^{a_1} \cdots e^{a_4} \;=\; 0 \,. \end{array} \right. \end{array}
This is essentially the claim in CDF91 (III.8.44-49 & 60b); full proof is given in GSS24, Lem. 3.2.
Proof
The general expansion of ρ\rho in the super-vielbein basis is of the form
ρ:=ρ abe ae b+H aψe a+ψ¯κψ⏟=0, \rho \;:=\; \rho_{a b} \, e^a\, e^b + H_a \psi \, e^a + \underset{ = 0 }{ \underbrace{ \overline{\psi} \,\kappa\, \psi } } \,,
where the last term is taken to vanish.l (…).
Therefore, the Bianchi identity has the following components,
(6)d(14!(G 4) a 1⋯a 4e a 1⋯e a 4−12(ψ¯Γ a 1a 2ψ)e a 1e a 2)=0 ⇔{(∇ a(G 4) a 1⋯a 4)e ae a 1⋯e a 4=0 (14!ψ α(∇ α(G 4) a 1⋯a 4)+(ψ¯Γ a 1a 2ρ a 3a 4))e a 1⋯e a 4=0 13!(G 4) ab 1b 2b 3(ψ¯Γ aψ)e b 1b 2b 3+(ψ¯Γ a 1a 2H bψ)e a 1e a 2e b=0, \begin{array}{l} \mathrm{d} \Big( \, \tfrac{1}{4!} (G_4)_{a_1 \cdots a_4} \, e^{a_1} \cdots e^{a_4} - \tfrac{1}{2} \big( \overline{\psi} \Gamma_{a_1 a_2} \psi \big) \, e^{a_1}\, e^{a_2} \Big) \;=\; 0 \\ \;\Leftrightarrow\; \left\{ \begin{array}{l} \big( \nabla_{a} (G_4)_{a_1 \cdots a_4} \big) e^{a}\, e^{a_1} \cdots e^{a_4} \;=\; 0 \\ \Big( \tfrac{1}{4!} \psi^\alpha \big( \nabla_\alpha (G_4)_{a_1 \cdots a_4} \big) \;+\; \big( \overline{\psi} \Gamma_{a_1 a_2} \rho_{a_3 a_4} \big) \Big) e^{a_1} \cdots e^{a_4} \;=\; 0 \\ \tfrac{1}{3!} (G_4)_{a b_1 b_2 b_3} \big( \overline{\psi} \,\Gamma^a\, \psi \big) \, e^{b_1 b_2 b_3} + \big( \overline{\psi} \,\Gamma_{a_1 a_2}\, H_b \psi \big) e^{a_1} \, e^{a_2} \, e^b \;=\; 0 \,, \end{array} \right. \end{array}
where we used that the quartic spinorial component vanishes identically, due to a Fierz identity (here):
−12(ψ¯Γ a 1a 2ψ)(ψ¯Γ a 1ψ)e a 2=0. - \tfrac{1}{2} \big( \overline{\psi} \Gamma_{a_1 a_2} \psi \big) \big( \overline{\psi} \Gamma^{a_1} \psi \big) e^{a_2} \;=\; 0 \,.
To solve the second line in (6) for H aH_a (this is CDF91 (III.8.43-49)) we expand H aH_a in the Clifford algebra (according to this Prop.), observing that for Γ a 1a 2H a 3\Gamma_{a_1 a_2} H_{a_3} to be a linear combination of the Γ a\Gamma_a the matrix H aH_a needs to have a Γ a 1\Gamma_{a_1}-summand or a Γ a 1a 2a 3\Gamma_{a_1 a_2 a_3}-summand. The former does not admit a Spin-equivariant linear combination with coefficients (G 4) a 1⋯a 4(G_4)_{a_1 \cdots a_4}, hence it must be the latter. But then we may also need a component Γ a 1⋯a 5\Gamma_{a_1 \cdots a_5} in order to absorb the skew-symmetric product in Γ a 1a 2H a\Gamma_{a_1 a_2} H_a. Hence H aH_a must be of this form:
(7)H a=const 113!(G 4) ab 1b 2b 3Γ b 1b 2b 3+const 214!(G 4) b 1⋯b 4Γ ab 1⋯b 4. H_a \;=\; \mathrm{const}_1 \, \tfrac{1}{3!} (G_4)_{a b_1 b_2 b_3} \Gamma^{b_1 b_2 b_3} + \mathrm{const}_2 \, \tfrac{1}{4!} (G_4)^{b_1 \cdots b_4} \Gamma_{a b_1 \cdots b_4} \,.
With this, we compute:
(8)(ψ¯Γ a 1a 2H a 3ψ)e a 1e a 2e a 3 =const 113!(G 4) a 3b 1b 2b 3(ψ¯Γ a 1a 2Γ b 1b 2b 3ψ)e a 1e a 2e a 3 +const 214!(G 4) b 1⋯b 4(ψ¯Γ a 1a 2Γ a 3b 1⋯b 4ψ)e a 1e a 2e a 3 =1const 113!(G 4) a 3b 1b 2b 3(ψ¯Γ a 1a 2 b 1b 2b 3ψ)e a 1e a 2e a 3 +6const 113!(G 4) b 3a 1a 2a 3(ψ¯Γ b 3ψ)e a 1e a 2e a 3 +8const 214!(G 4) b 1⋯b 3a 3(ψ¯Γ a 1a 2 b 1⋯b 3ψ)e a 1e a 2e a 3. \begin{array}{ll} \big( \overline{\psi} \Gamma_{a_1 a_2} H_{a_3} \psi \big) e^{a_1} \, e^{a_2} \, e^{a_3} & =\; \mathrm{const}_1 \, \tfrac{1}{3!} (G_4)_{a_3 b_1 b_2 b_3} \, \big( \overline{\psi} \Gamma_{a_1 a_2} \Gamma^{b_1 b_2 b_3} \psi \big) e^{a_1} \, e^{a_2} \, e^{a_3} \\ & \;\;\;+\, \mathrm{const}_2 \, \tfrac{1}{4!} \, (G_4)^{b_1 \cdots b_4} \, \big( \overline{\psi} \Gamma_{a_1 a_2} \Gamma_{a_3 b_1 \cdots b_4} \psi \big) e^{a_1} \, e^{a_2} \, e^{a_3} \\ & \;=\; 1 \, \mathrm{const}_1 \, \tfrac{1}{3!} \, (G_4)_{a_3 b_1 b_2 b_3} \big( \overline{\psi} \,\Gamma_{a_1 a_2}{}^{b_1 b_ 2 b_3}\, \psi \big) e^{a_1} \, e^{a_2} \, e^{a_3} \\ & \;\;\;+\, 6 \, \mathrm{const}_1 \, \tfrac{1}{3!} \, (G_4)_{b_3 a_1 a_2 a_3} \big( \overline{\psi} \,\Gamma^{b_3}\, \psi \big) e^{a_1} \, e^{a_2} \, e^{a_3} \\ & \;\;\;+\, 8 \, \mathrm{const}_2 \, \tfrac{1}{4!} \, (G_4)^{b_1 \cdots b_3 a_3} \, \big( \overline{\psi} \Gamma^{a_1 a_2}{}_{b_1 \cdots b_3} \psi \big) e^{a_1} \, e^{a_2} \, e^{a_3} \,. \end{array}
Here the multiplicities of the nonvanishing Clifford-contractions arise via this Lemma:
1=0!(20)(30) 6=2!(22)(32) 8=1!(21)(41), \begin{array}{l} 1 \;=\; 0! \Big( {2 \atop 0} \Big) \Big( {3 \atop 0} \Big) \\ 6 \;=\; 2! \Big( {2 \atop 2} \Big) \Big( {3 \atop 2} \Big) \\ 8 \;=\; 1! \Big( {2 \atop 1} \Big) \Big( {4 \atop 1} \Big) \,, \end{array}
and all remaining contractions vanish inside the spinor pairing by this lemma.
const 1=−1/6, const 2=−4!/3!const 1/8=+1/12, \begin{array}{l} \mathrm{const}_1 = -1/6 \,, \\ \mathrm{const}_2 = - 4!/3! \, \mathrm{const}_1 / 8 = + 1/12 \,, \end{array}
as claimed.
Lemma
Given the Bianchi identity for G 4 sG^s_4 (5), then the Bianchi identity for G 7 sG^s_7 (1) is equivalent to
-
the Bianchi identity for the ordinary flux density G 7G_7
-
its Hodge duality to G 4G_4
-
another condition on the gravitino field strength
(9)dG 7 s=12G 4 sG 4 s ⇔{(∇ a 117!(G 7) a 2⋯a 8)e a 1⋯e a 8=12(14!(G 4) a 1⋯a 414!(G 4) a 5⋯a 8)e a 1⋯e a 8 (G 7) a 1⋯a 7=14!ϵ a 1⋯a bb 1⋯b 4(G 4) b 1⋯b 4 (17!ψ α∇ α(G 7) a 1⋯a 7ψ α+25!(ψ¯Γ a 1⋯a 5ρ a 6a 7))e a 1⋯e a 7=0 \begin{array}{l} \mathrm{d} \, G^s_7 \;=\; \tfrac{1}{2} G^s_4 \, G^s_4 \\ \;\Leftrightarrow\; \left\{ \begin{array}{l} \big( \nabla_{a_1} \tfrac{1}{7!} (G_7)_{a_2 \cdots a_8} \big) e^{a_1} \cdots e^{a_8} \;=\; \tfrac{1}{2} \big( \tfrac{1}{4!} (G_4)_{a_1 \cdots a_4} \, \tfrac{1}{4!} (G_4)_{a_5 \cdots a_8} \big) e^{a_1} \cdots e^{a_8} \\ (G_7)_{a_1 \cdots a_7} \;=\; \tfrac{1}{4!} \epsilon_{a_1 \cdots a_b b_1 \cdots b_4} (G_4)^{b_1 \cdots b_4} \\ \Big( \tfrac{1}{7!} \psi^\alpha \nabla_\alpha (G_7)_{a_1 \cdots a_7} \psi^\alpha \;+\; \frac{2}{5!} \big( \overline{\psi} \Gamma_{a_1 \cdots a_5} \rho_{a_6 a_7} \big) \Big) e^{a_1} \cdots e^{a_7} \;=\; 0 \end{array} \right. \end{array}
This is essentially CDF91, (III.8.50-53).
Proof
The components of the Bianchi identity are
dG 4 s=0 ⇒{d(17!(G 7) a 1⋯a 7e a 1⋯e a 7−15!(ψ¯Γ a 1⋯a 5ψ)e a 1⋯e a 5) =12(14!(G 4) a 1⋯a 4e a 1⋯e a 4−12(ψ¯Γ a 1a 2ψ))(14!(G 4) a 1⋯a 4e a 1⋯e a 4−12(ψ¯Γ a 1a 2ψ)) ⇔{(∇ a 117!(G 7) a 2⋯a 8=1214!(G 4) a 1⋯a 414!(G 4) a 5⋯a 8)e a 1⋯e a 8 (17!ψ α∇ α(G 7) a 1⋯a 7+25!(ψ¯Γ a 1⋯a 5ρ a 6a 7))e a 1⋯e a 7=0 16!(G 7) a 1⋯a 6b(ψ¯Γ bψ)e a 1⋯e a 6 +21215!14!(G 4) b 1⋯b 4(ψ¯Γ a 1⋯a 5Γ ab 1⋯b 4ψ)e ae a 1⋯e a 5 −2615!13!(G 4) ab 1b 2b 3(ψ¯Γ a 1⋯a 5Γ b 1b 2b 3ψ)e ae a 1⋯e a 5 −(12(ψ¯Γ a 1a 2ψ)e a 1e a 2)14!(G 4) b 1⋯b 4e b 1⋯e b 4=0,}⇔(G 7) a 1⋯a 6b=14!ϵ a 1⋯a 6bb 1⋯b 4(G 4) b 1⋯b 4 \begin{array}{l} \mathrm{d} \, G_4^s \;=\; 0 \\ \Rightarrow \left\{ \begin{array}{l} \mathrm{d} \Big( \tfrac{1}{7!} (G_7)_{a_1 \cdots a_7} \, e^{a_1} \cdots e^{a_7} - \tfrac{1}{5!} \big( \overline{\psi} \Gamma_{a_1 \cdots a_5} \psi \big) e^{a_1} \cdots e^{a_5} \Big) \\ \;=\; \tfrac{1}{2} \Big( \tfrac{1}{4!} (G_4)_{a_1 \cdots a_4} e^{a_1} \cdots e^{a_4} - \tfrac{1}{2} \big( \overline{\psi} \Gamma_{a_1 a_2} \psi \big) \Big) \Big( \tfrac{1}{4!} (G_4)_{a_1 \cdots a_4} e^{a_1} \cdots e^{a_4} - \tfrac{1}{2} \big( \overline{\psi} \Gamma_{a_1 a_2} \psi \big) \Big) \\ \;\Leftrightarrow\; \left\{ \begin{array}{l} \Big( \nabla_{a_1} \tfrac{1}{7!} (G_7)_{a_2 \cdots a_8} \;=\; \;\tfrac{1}{2}\; \tfrac{1}{4!} (G_4)_{a_1 \cdots a_4} \, \tfrac{1}{4!} (G_4)_{a_5 \cdots a_8} \Big) e^{a_1} \cdots e^{a_8} \\ \Big( \tfrac{1}{7!} \psi^\alpha \nabla_\alpha (G_7)_{a_1 \cdots a_7} + \frac{2}{5!} \big( \overline{\psi} \Gamma_{a_1 \cdots a_5} \rho_{a_6 a_7} \big) \Big) e^{a_1} \cdots e^{a_7} \;=\; 0 \\ \left. \begin{array}{l} \tfrac{1}{6!} (G_7)_{a_1 \cdots a_6 b} \big( \overline{\psi} \,\Gamma^b\, \psi \big) e^{a_1} \cdots e^{a_6} \\ \;\;\;+\, \tfrac{2}{12} \, \tfrac{1}{5!} \, \tfrac{1}{4!} \, (G_4)^{b_1 \cdots b_4} \big( \overline{\psi} \, \Gamma_{a_1 \cdots a_5} \, \Gamma_{a b_1 \cdots b_4}\, \psi \big) e^a \, e^{a_1} \cdots e^{a_5} \\ \;\;-\; \tfrac{2}{6} \tfrac{1}{5!} \tfrac{1}{3!} (G_4)_{a b_1 b_2 b_3} \big( \overline{\psi} \,\Gamma_{a_1 \cdots a_5}\, \Gamma^{b_1 b_2 b_3} \psi \big) e^{a} \, e^{a_1} \cdots e^{a_5} \\ \;\;\;-\, \Big( \tfrac{1}{2} \big( \overline{\psi} \Gamma_{a_1 a_2} \psi \big) e^{a_1} \, e^{a_2} \Big) \tfrac{1}{4!} (G_4)_{b_1 \cdots b_4} \, e^{b_1} \cdots e^{b_4} \;\;=\;\; 0 \,, \end{array} \right\} \Leftrightarrow (G_7)_{a_1 \cdots a_6 b} \;=\; \tfrac{1}{4!} \epsilon_{a_1 \cdots a_6 b b_1 \cdots b_4} (G_4)^{b_1 \cdots b_4} \end{array} \right. \end{array} \right. \end{array}
where:
(i) in the quadratic spinorial component we inserted the expression for ρ\rho from (5), then contracted Γ\Gamma-factors using again this Lemma, and finally observed that of the three spinorial quadratic forms (see there) the coefficients of (ψ¯Γ a 1a 2ψ)\big(\overline{\psi}\Gamma_{a_1 a_2} \psi\big) and of (ψ¯Γ a 1⋯a 6ψ)\big(\overline{\psi}\Gamma_{a_1 \cdots a_6} \psi\big) vanish identically, by a remarkable cancellation of combinatorial prefactors:
-
(−21215!14!4!(54)(44)+2615!13!3!(53)(33)−1214!)⏟=0(G 4) a 2⋯a 5(ψ¯Γ aa 1ψ)e ae a 1⋯e a 6\underset{= 0 }{\underbrace{\bigg(- \frac{2}{12} \frac{1}{5!} \frac{1}{4!} 4! \Big( { 5 \atop 4 } \Big) \Big( { 4 \atop 4 } \Big) \;+\; \frac{2}{6} \frac{1}{5!} \frac{1}{3!} 3! \Big( { 5 \atop 3 } \Big) \Big( { 3 \atop 3 } \Big) \;-\; \frac{1}{2} \frac{1}{4!} \bigg) } } \; (G_4)_{a_2 \cdots a_5} \big( \overline{\psi} \,\Gamma_{a a_1}\, \psi \big) e^{a} \, e^{a_1} \cdots e^{a_6} \;\;\; (check)
-
(21215!14!2(52)(42)−2615!13!1(51)(31))⏟=0(G 4) a 1a 2b 1b 2(ψ¯Γ a 3⋯a 6 b 1b 2ψ)e a 1⋯e a 6\underset{ = 0 }{ \underbrace{ \bigg( \frac{2}{12} \frac{1}{5!} \frac{1}{4!} 2 \Big( { 5 \atop 2 } \Big) \Big( { 4 \atop 2 } \Big) \;-\; \frac{2}{6} \frac{1}{5!} \frac{1}{3!} 1 \Big( { 5 \atop 1 } \Big) \Big( { 3 \atop 1 } \Big) \bigg) } } \; (G_4)_{a_1 a_2 b_1 b_2} \big( \overline{\psi} \,\Gamma_{a_3 \cdots a_6}{}^{b_1 b_2}\, \psi \big) e^{a_1} \cdots e^{a_6} \;\;\; (check)
(ii) the quartic spinorial component holds identitically, due to the Fierz identity here:
−14!(ψ¯Γ a 1⋯a 5ψ)(ψ¯Γ a 1)e a 2⋯e a 5=18((ψ¯Γ a 1a 2ψ)e a 1e a 2)((ψ¯Γ a 1a 2ψ)e a 1e a 2). -\tfrac{1}{4!} \big( \overline{\psi} \,\Gamma_{a_1 \cdots a_5}\, \psi \big) \big( \overline{\psi} \Gamma^{a_1} \big) e^{a_2} \cdots e^{a_5} \;=\; \tfrac{1}{8} \Big( \big( \overline{\psi} \,\Gamma_{a_1 a_2}\, \psi \big) e^{a_1} e^{a_2} \Big) \Big( \big( \overline{\psi} \,\Gamma_{a_1 a_2}\, \psi \big) e^{a_1} e^{a_2} \Big) \,.
Therefore the only spinorial component of the Bianchi identity which is not automatically satisfied is (with Γ 012⋯=ϵ 012⋯\Gamma_{0 1 2 \cdots} = \epsilon_{0 1 2 \cdots}, see there) the vanishing of
16!((G 7) a 1⋯a 6b−14!(G 4) b 1⋯b 4ϵ b 1⋯b 4a 1⋯a 6b)(ψ¯Γ bψ), \tfrac{1}{6!} \Big( (G_7)_{a_1 \cdots a_6 b} - \tfrac{1}{4!} (G_4)^{b_1 \cdots b_4} \epsilon_{b_1 \cdots b_4 a_1 \cdots a_6 b} \Big) \big( \overline{\psi} \,\Gamma^b\, \psi \big) \,,
which is manifestly the claimed Hodge duality relation.
Lemma
Given the Bianchi identities for G 4 sG_4^s (5) and G 7 sG_7^s (9), the supergravity fields satisfy their Einstein equations with source the energy momentum tensor of the C-field:
(10)dG 4 s=0,dG 7 s=12G 4 sG 4 2 ⇒{R bm am−12δ b aR mn mn=−112((G 4) ac 1⋯c 3(G 4) bc 1⋯c 3−18(G 4) c 1⋯c 4(G 4) c 1⋯c 4δ b a(Einstein equation) Γ ba 1a 2ρ a 1a 2=0(Rarita-Schwinger equation) \begin{array}{l} \mathrm{d}\, G_4^s \;=\;0 \,, \;\;\; \mathrm{d}\, G_7^s \;=\; \tfrac{1}{2} G_4^s \, G_4^2 \\ \;\Rightarrow\; \left\{ \begin{array}{l} R^{a m}_{b m} - \tfrac{1}{2} \delta^a_b\, R^{m n}_{m n} \;=\; - \tfrac{1}{12} \Big( \, (G_4)^a{c_1 \cdots c_3} (G_4)_{b c_1 \cdots c_3} - \tfrac{1}{8} (G_4)^{c_1 \cdots c_4} (G_4)_{c_1 \cdots c_4} \delta^a_b \;\;\;\; ({\color{darkblue}\text{Einstein equation}}) \\ \Gamma^{b a_1 a_2} \rho_{a_1 a_2} \;=\; 0 \;\;\;\; ({\color{darkblue}\text{Rarita-Schwinger equation}}) \end{array} \right. \end{array}
Cf. e.g. CDF91, (III.8.54-60); full details are given in GSS24, Lem. 3.8.
The action functional
(…)
Kinetic terms
(…)
The higher Chern-Simons term
under construction
∫ X(16(C∧G∧G−C∧18(p 2+(12p 1) 2))) \int_X \left( \frac{1}{6} \left( C \wedge G \wedge G - C \wedge \frac{1}{8} \left( p_2 + (\frac{1}{2}p_1)^2 \right) \right) \right)
where p ip_i is the iith Pontryagin class.
λ≔12p 1. \lambda \coloneqq \frac{1}{2}p_1 \,.
Concerning the integrality of the I8-term
I 8≔148(p 2+(λ) 2) I_8 \coloneqq \frac{1}{48}(p_2 + (\lambda)^2)
on a spin manifold XX. (Witten96, p.9)
First, the index of a Dirac operator on XX is
I=11440(7(12p 1) 2−p 2)∈ℤ. I = \frac{1}{1440}(7 (\frac{1}{2}p_1)^2 - p_2) \in \mathbb{Z} \,.
Notice that 1440=6×8×301440 = 6 \times 8 \times 30. So
p 2−(12p 2) 2=6((12p 1) 2−30×8I) p_2 - (\frac{1}{2}p_2)^2 = 6 ( (\frac{1}{2}p_1)^2 - 30 \times 8 I)
is divisible by 6.
Assume that (12p 1)(\frac{1}{2}p_1) is further divisible by 2 (see the relevant discussion at M5-brane).
(12p 1)=2x. (\frac{1}{2}p_1) = 2 x \,.
Then the above becomes
p 2−(12p 2) 2=24(x 2−30×2I) p_2 - (\frac{1}{2}p_2)^2 = 24 ( x^2 - 30 \times 2 I)
and hence then p 2+(12p 1) 2p_2 + (\frac{1}{2}p_1)^2 is divisible at least by 24.
But moreover, on a Spin manifold the first fractional Pontryagin class 12p 1\frac{1}{2}p_1 is the Wu class ν 4\nu_4 (see there). By definition this means that
x 2=x(12p 1)mod2 x^2 = x (\frac{1}{2}p_1) \; mod \; 2
and so when (12p 1) 2(\frac{1}{2}p_1)^2 is further divisible by 2 we have that p 2−(12p 1) 2p_2 - (\frac{1}{2}p_1)^2 is divisible by 48. Hence I 8I_8 is integral.
Higher curvature corrections
Possible higher curvature corrections to 11-dimensional supergravity are discussed in the references listed below.
The first correction is an R 4R^4-term at order ℓ P 3\ell^3_{P} (11d Planck length). In Tsimpis 04 it is shown that part of this is a topological term (total derivative) which relates to the shifted C-field flux quantization.
For effects of higher curvature corrections in a Starobinsky model of cosmic inflation see there.
The hidden deformation
There is in fact a hidden 1-parameter deformation of the Lagrangian of 11d sugra. Mathematically this was maybe first noticed in (D’Auria-Fre 82) around equation (4.25). This shows that there is a topological term which may be expressed as
∝∫ X 11G 4∧G 7 \propto \; \textstyle{\int}_{X_11} G_4 \wedge G_7
where G 4G_4 is the curvature 3-form of the supergravity C-field and G 7G_7 that of the magnetically dual C6-field. However, (D’Auria-Fre 82) consider only topologically trivial (trivial instanton sector) configurations of the supergravity C-field, and since on them this term is a total derivative, the authors “drop” it.
The term then re-appears in the literatur in (Bandos-Berkovits-Sorokin 97, equation (4.13)). And it seems that this is the same term later also redicovered around equation (4.2) in (Tsimpis 04).
(hm, check)
BPS states
The basic BPS states of 11d SuGra are
(e.g. EHKNT 07)
-
10-dimensional type II supergravity, heterotic supergravity
-
supergravity C-field, supergravity Lie 3-algebra, supergravity Lie 6-algebra
-
string theory FAQ – Does string theory predict supersymmetry?
Table of branes appearing in supergravity/string theory (for classification see at brane scan).
References
- Mike Duff, chapter 1 of: The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IoP (1999) [ISBN:9780750306720]
General
That there is a maximal dimension d=11d = 11 in which supergravity may exist was found in
- Werner Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [spire, pdf]
The theory was then actually constructed (as a Lagrangian field theory) in
- Eugène Cremmer, Bernard Julia, Joël Scherk, Supergravity in theory in 11 dimensions, Phys. Lett. B 76 (1978) 409 [doi:10.1016/0370-2693(78)90894-8]
The claim of the derivation of D=11D=11 supergravity in supergeometry, by solving the torsion constraint and Bianchi identities on super spacetime supermanifolds (“superspace”) is due to
-
Eugène Cremmer, Sergio Ferrara, Formulation of Eleven-Dimensional Supergravity in Superspace, Phys. Lett. B 91 (1980) 61 [doi:10.1016/0370-2693(80)90662-0]
-
Lars Brink, Paul Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace, Phys. Lett. B 91 (1980) 384 [doi:10.1016/0370-2693(80)91002-3]
and in the mild variation (using a manifestly duality-symmetric super-C-field flux density) due to
A proof of this claim is laid out in
- Grigorios Giotopoulos, Hisham Sati, Urs Schreiber, §3 of: Flux Quantization on 11d Superspace, Journal of High Energy Physics 2024 82 (2024) [arXiv:2403.16456, doi:10.1007/JHEP07(2024)082]
using further lemmas and then heavy computer algebra checks (here).
With focus on the Kaluza-Klein compactification to 4d anti de Sitter spacetime:
-
Michael Duff, Bengt Nilsson, Christopher Pope: Kaluza-Klein supergravity, Physics Reports 130 1–2 (1986) 1-142 [spire:229417, doi:10.1016/0370-1573(86)90163-8]
-
Michael Duff, Bengt Nilsson, Christopher Pope: Kaluza-Klein Supergravity 2025, in: Half a Century of Supergravity [arXiv:2502.07710]
The history as of the 1990s, with an eye towards the development to M-theory:
- Mike Duff, chapter I of: The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IoP 1999 (publisher)
The description of 11d supergravity in terms of the D'Auria-Fré-Regge formulation of supergravity originates in
- Riccardo D'Auria, Pietro Fré, Geometric Supergravity in D=11 and its hidden supergroup, Nuclear Physics B 201 (1982) 101-140 [doi:10.1016/0550-3213(82)90376-5, errata]
of which a textbook account is in
- Leonardo Castellani, Riccardo D'Auria, Pietro Fré, chapters III.8 and V.4-V.11 in vol 2 of: Supergravity and Superstrings - A Geometric Perspective, World Scientific (1991) [doi:10.1142/0224, epdf, ch III.8: pdf]
reviewed again in
- Pietro Fré, §6.4 in: Gravity, a Geometrical Course, Volume 2: Black Holes, Cosmology and Introduction to Supergravity, Springer (2013) [doi:10.1007/978-94-007-5443-0]
The topological deformation (almost) noticed in equation (4.25) of D’Auria-Fre 82 later reappears in (4.13) of
- Igor Bandos, Nathan Berkovits, Dmitri Sorokin, Duality-Symmetric Eleven-Dimensional Supergravity and its Coupling to M-Branes, Nucl. Phys. B522 (1998) 214-233 (arXiv:hep-th/9711055)
and around (4.2) of Tsimpis 04
The D'Auria-Fré formulation is a first-order formulation of D=11D=11 supergravity; for more on this see:
- Bernard Julia, S. Silva, §6 of: On first order formulations of supergravities, JHEP 0001 (2000) 026 [arXiv:hep-th/9911035, doi:10.1088/1126-6708/2000/01/026]
More recent textbook accounts include
- Antoine Van Proeyen, Daniel Freedman, Section 10 of: Supergravity, Cambridge University Press (2012) [doi:10.1017/CBO9781139026833]
Discussion of the equivalence of the 11d SuGra equations of motion with the supergravity torsion constraints is in
- Paul Howe, Weyl Superspace, Physics Letters B 415 2 (1997) 149-155 [arXiv:hep-th/9707184, doi:10.1016/S0370-2693(97)01261-6]
following
- A. Candiello, Kurt Lechner, Duality in Supergravity Theories, Nucl.Phys. B412 (1994) 479-501 (arXiv:hep-th/9309143)
Much computational detail is displayed in
- André Miemiec, Igor Schnakenburg, Basics of M-Theory, Fortsch. Phys. 54 (2006) 5-72 [arXiv:hep-th/0509137, doi:10.1002/prop.200510256]
In terms of pure spinors:
- Max Guillen, Pure spinors and D=11D=11 supergravity (arXiv:2006.06014)
Duality-symmetric formulation
Formulation of the equations of motion of D=11 supergravity in superspace on fields including a flux density G 7G_7 a priori independent of the flux density G 4G_4 of the supergravity C-field:
-
Leonardo Castellani, Riccardo D'Auria, Pietro Fré, ch III.8.3-III.8.5 in vol 2 of: Supergravity and Superstrings - A Geometric Perspective, World Scientific (1991) [doi:10.1142/0224, epdf, ch III.8: pdf]
(Using the D'Auria-Fre formulation of supergravity.)
-
Antonio Candiello, Kurt Lechner, §6 in: Duality in supergravity theories, Nuclear Physics B 412 3 (1994) 479-501 [doi:10.1016/0550-3213(94)90389-1]
(These authors seem not to be aware of CDF91, III.8 and, contrary to the result there, conclude that it is not possible without introducing non-local relations.)
Discussion of Lagrangian densities for D=11 supergravity with an a priori independent dual C-field field and introduction of the “duality-symmetric” terminology:
-
Igor Bandos, Nathan Berkovits, Dmitri Sorokin, Duality-Symmetric Eleven-Dimensional Supergravity and its Coupling to M-Branes, Nucl. Phys. B 522 (1998) 214-233 [doi:10.1016/S0550-3213(98)00102-3, arXiv:hep-th/9711055]
-
Eugene Cremmer, Bernard Julia, H. Lu, Christopher Pope, Section 2 of Dualisation of Dualities, II: Twisted self-duality of doubled fields and superdualities, Nucl.Phys. B 535 (1998) 242-292 [doi:10.1016/S0550-3213(98)00552-5, arXiv:hep-th/9806106]
-
Igor Bandos, Alexei Nurmagambetov, Dmitri Sorokin, Section 2 of: Various Faces of Type IIA Supergravity, Nucl. Phys. B 676 (2004) 189-228 [doi:10.1016/j.nuclphysb.2003.10.036, arXiv:hep-th/0307153]
-
Alexei J. Nurmagambetov, The Sigma-Model Representation for the Duality-Symmetric D=11D=11 Supergravity, eConf C0306234 (2003) 894-901 [arXiv:hep-th/0312157, inspire:635585]
Discussion in the context of shifted C-field flux quantization:
Supergravity C-Field gauge algebra
Identifying the super-graded gauge algebra of the C-field in D=11 supergravity (with non-trivial super Lie bracket [v 3,v 3]=−v 6[v_3, v_3] = -v_6):
-
Eugene Cremmer, Bernard Julia, H. Lu, Christopher Pope, Equation (2.6) of Dualisation of Dualities, II: Twisted self-duality of doubled fields and superdualities, Nucl.Phys. B 535 (1998) 242-292 [doi:10.1016/S0550-3213(98)00552-5, arXiv:hep-th/9806106]
-
I. V. Lavrinenko, H. Lu, Christopher N. Pope, Kellogg S. Stelle, (3.4) in: Superdualities, Brane Tensions and Massive IIA/IIB Duality, Nucl. Phys. B 555 (1999) 201-227 [doi:10.1016/S0550-3213(99)00307-7, arXiv:hep-th/9903057]
-
Jussi Kalkkinen, Kellogg S. Stelle, (75) of: Large Gauge Transformations in M-theory, J. Geom. Phys. 48 (2003) 100-132 [doi:10.1016/S0393-0440(03)00027-5, arXiv:hep-th/0212081]
-
Igor A. Bandos, Alexei J. Nurmagambetov, Dmitri P. Sorokin, (86) in: Various Faces of Type IIA Supergravity, Nucl.Phys. B 676 (2004) 189-228 [doi:10.1016/j.nuclphysb.2003.10.036, arXiv:hep-th/0307153]
Identification as an L ∞ L_\infty -algebra (a dg-Lie algebra, in this case):
- Hisham Sati, (4.9) in: Geometric and topological structures related to M-branes, in Superstrings, Geometry, Topology, and C *C^\ast-algebras, Proc. Symp. Pure Math. 81 (2010) 181-236 [ams:pspum/081, arXiv:1001.5020]
and identificatoin with the rational Whitehead L ∞ L_\infty -algebra (the rational Quillen model) of the 4-sphere (cf. Hypothesis H):
-
Hisham Sati, Alexander Voronov, (13) in: Mysterious Triality and M-Theory [arXiv:2212.13968]
-
Hisham Sati, Urs Schreiber, (22) in: Flux Quantization on Phase Space [arXiv:2312.12517]
Classical solutions and BPS states
Bosonic solutions of eleven-dimensional supergravity were studied in the 1980s in the context of Kaluza-Klein supergravity. The topic received renewed attention in the mid-to-late 1990s as a result of the branes and duality paradigm and the AdS/CFT correspondence.
One of the earliest solutions of eleven-dimensional supergravity is the maximally supersymmetric Freund-Rubin compactification with geometry AdS 4×S 7AdS_4 \times S^7 and 4-form flux proportional to the volume form on AdS 4AdS_4.
- Peter Freund, Mark Rubin, Dynamics of Dimensional Reduction Phys.Lett. B97 (1980) 233-235 (inSpire)
The radii of curvatures of the two factors are furthermore in a ratio of 1:2. The modern avatar of this solution is as the near-horizon geometry of coincident M2-branes.
- Mike Duff, Kellogg Stelle, Multi-membrane solutions of D=11D = 11 supergravity, Phys. Lett. B 253, 113 (1991) (spire:299386, doi:10.1016/0370-2693(91)91371-2)
Shortly after the original Freund-Rubin solution was discovered, Englert discovered a deformation of this solution where one could turn on flux on the S 7S^7; namely, singling out one of the Killing spinors of the solution, a suitable multiple of the 4-form one constructs by squaring the spinor can be added to the volume form in AdS 4AdS_4 and the resulting 4-form still obeys the supergravity field equations, albeit with a different relation between the radii of curvature of the two factors. The flux breaks the SO(8) symmetry of the sphere to an SO(7)SO(7) subgroup.
- Francois Englert, Spontaneous Compactification of Eleven-Dimensional Supergravity Phys.Lett. B119 (1982) 339 (inSPIRE)
Some of the above is taken from this TP.SE thread.
See also
-
Don Page, Classical stability of round and squashed seven-spheres in eleven-dimensional supergravity, Phys. Rev. D 28, 2976 (1983) (spire:14480 doi:10.1103/PhysRevD.28.2976)
-
Ergin Sezgin, 11D Supergravity on AdS 4×S 7AdS_4 \times S^7 versus AdS 7×S 4AdS_7 \times S^4 [arXiv:2003.01135]
-
Tetsuji Kimura, Eleven-dimensional Supergravities on Maximally Supersymmetric Backgrounds, TK-NOTE/03-11 (2003-2014) [pdf, pdf]
Classification of symmetric solutions:
-
José Figueroa-O'Farrill, Symmetric M-Theory Backgrounds, Open Physics 11 1 (2013) 1-36 [arXiv:1112.4967, doi:10.2478/s11534-012-0160-6]
-
Linus Wulff, All symmetric space solutions of eleven-dimensional supergravity, Journal of Physics A: Mathematical and Theoretical 50 24 (2017) 245401 [arXiv:1611.06139, doi:10.1088/1751-8121/aa70b6]
Discussion of black branes and BPS states includes
-
Kellogg Stelle, section 3 of BPS Branes in Supergravity (arXiv:hep-th/9803116)
-
Francois Englert, Laurent Houart, Axel Kleinschmidt, Hermann Nicolai, Nassiba Tabti, An E 9E_9 multiplet of BPS states, JHEP 0705:065,2007 (arXiv:hep-th/0703285)
-
Andrew Callister, Douglas Smith, Topological BPS charges in 10 and 11-dimensional supergravity, Phys. Rev. D78:065042,2008 (arXiv:0712.3235)
-
Andrew Callister, Douglas Smith, Topological charges in SL(2,ℝ)SL(2,\mathbb{R}) covariant massive 11-dimensional and Type IIB SUGRA, Phys.Rev.D80:125035,2009 (arXiv:0907.3614)
-
Andrew Callister, Topological BPS charges in 10- and 11-dimensional supergravity, thesis 2010 (spire)
-
A. A. Golubtsova, V.D. Ivashchuk, BPS branes in 10 and 11 dimensional supergravity, talk at DIAS 2013 (pdf slides)
-
Cristine N. Ferreira, BPS solution for eleven-dimensional supergravity with a conical defect configuration (arXiv:1312.0578)
Discussion of black hole horizons includes
- Jan Gutowski, George Papadopoulos, Static M-horizons (arXiv:1106.3085)
See also
- Teng Fei, Bin Guo, Duong H. Phong, A Geometric Construction of Solutions to 11D Supergravity (arXiv:1805.07506)
Resolution of scalar field-dressed Schwarzschild black holes in D=11 supergravity:
- Ibrahima Bah, Pierre Heidmann, Geometric Resolution of Schwarzschild Horizon [arXiv:2303.10186]
Higher curvature corrections to D=11D=11 supergravity
Discussion of higher curvature corrections to 11-dimensional supergravity (i.e. in M-theory):
- Arkady Tseytlin, R 4R^4 terms in 11 dimensions and conformal anomaly of (2,0) theory, Nucl. Phys. B584: 233-250, 2000 (arXiv:hep-th/0005072)
Via 11d superspace cohomology
Via 11d superspace-cohomology (or mostly):
-
Kasper Peeters, Pierre Vanhove, Anders Westerberg, Supersymmetric R 4R^4 actions and quantum corrections to superspace torsion constraints (arXiv:hep-th/0010182)
-
H. Lu, Christopher Pope, Kellogg Stelle, Paul Townsend, Supersymmetric Deformations of G 2G_2 Manifolds from Higher-Order Corrections to String and M-Theory, JHEP 0410:019, 2004 (arXiv:hep-th/0312002)
(specifically for M-theory on G₂-manifolds)
-
H. Lu, Christopher Pope, Kellogg Stelle, Paul Townsend, String and M-theory Deformations of Manifolds with Special Holonomy, JHEP 0507:075, 2005 (arXiv:hep-th/0410176)
(specifically for M-theory on G₂-manifolds)
-
Paul S. Howe, Dimitrios Tsimpis, On higher-order corrections in M theory, JHEP 0309 (2003) 038 [doi:10.1088/1126-6708/2003/09/038, arXiv:hep-th/0305129]
-
Dimitrios Tsimpis, 11D supergravity at 𝒪(ℓ 3)\mathcal{O}(\ell^3), JHEP0410:046 (2004) [arXiv:hep-th/0407271, doi:10.1088/1126-6708/2004/10/046]
-
Paul Howe, R 4R^4 terms in supergravity and M-theory, contribution to Deserfest: A Celebration of the Life and Works of Stanley Deser (2004) 137-149 [inspire:657136, arXiv:hep-th/0408177]
-
Martin Cederwall, Ulf Gran, Bengt Nilsson, Dimitrios Tsimpis, Supersymmetric Corrections to Eleven-Dimensional Supergravity, JHEP 0505:052 (2005) [doi;10.1088/1126-6708/2005/05/052, arXiv:hep-th/0409107]
-
Yoshifumi Hyakutake, Sachiko Ogushi, R 4R^4 Corrections to Eleven Dimensional Supergravity via Supersymmetry, Phys.Rev. D74 (2006) 025022 (arXiv:hep-th/0508204)
-
Yoshifumi Hyakutake, Sachiko Ogushi, Higher Derivative Corrections to Eleven Dimensional Supergravity via Local Supersymmetry, JHEP0602:068, 2006 (arXiv:hep-th/0601092)
-
Anirban Basu, Constraining gravitational interactions in the M theory effective action, Classical and Quantum Gravity, Volume 31, Number 16, 2014 (arXiv:1308.2564)
-
Bertrand Souères, Dimitrios Tsimpis, The action principle and the supersymmetrisation of Chern-Simons terms in eleven-dimensional supergravity, Phys. Rev. D 95 026013 (2017) [doi:10.1103/PhysRevD.95.026013, arXiv:1612.02021]
-
Bertrand Souères, Supergravities in Superspace, Lyon 2018 (tel:01998725, pdf)
Via superparticle scattering in 11d
Via analysis of would-be superparticle scattering amplitudes on D=11 supergravity backgrounds:
- Kasper Peeters, Jan Plefka, Steffen Stern, Higher-derivative gauge field terms in the M-theory action, JHEP 0508 (2005) 095 (arXiv:hep-th/0507178)
Via exceptional geometry
Via geodesic motion on the coset space of the U-duality Kac-Moody group E 10 E_{10} by its “maximal compact” subgroup K(E 10)K(E_{10}):
- Thibault Damour, Hermann Nicolai: Higher order M theory corrections and the Kac-Moody algebra E 10E_{10}, Class. Quant. Grav. 22 (2005) 2849-2880 [arXiv:hep-th/0504153, doi:10.1088/0264-9381/22/14/003]
(relating to higher curvature corrections)
Via lifting 10d stringy corrections
From lifting alpha'-corrections in type IIA string theory through the duality between M-theory and type IIA string theory:
- James Liu, Ruben Minasian, Higher-derivative couplings in string theory: dualities and the B-field, Nucl. Phys. B 2013 (arXiv:1304.3137)
- James Liu, Ruben Minasian, Raffaele Savelli, Andreas Schachner, Type IIB at eight derivatives: insights from Superstrings, Superfields and Superparticles [[arXiv:2205.11530]]
Via the ABJM M2-brane model
From the ABJM model for the M2-brane:
- Damon J. Binder, Shai Chester, Silviu S. Pufu, Absence of D 4R 4D^4 R^4 in M-Theory From ABJM [arXiv:1808.10554]
In terms of D=4 supergravity:
-
Nikolay Bobev, Anthony M. Charles, Kiril Hristov, Valentin Reys, The Unreasonable Effectiveness of Higher-Derivative Supergravity in AdS 4AdS_4 Holography, Phys. Rev. Lett. 125 131601 (2020) [doi:10.1103/PhysRevLett.125.131601, arXiv:2006.09390]
-
Nikolay Bobev, Anthony M. Charles, Dongmin Gang, Kiril Hristov, Valentin Reys, Higher-Derivative Supergravity, Wrapped M5-branes, and Theories of Class ℛ\mathcal{R}, J. High Energ. Phys. 2021 58 (2021) [doi:10.1007/JHEP04(2021)058, arXiv:2011.05971]
-
Kiril Hristov, ABJM at finite NN via 4d supergravity, J. High Energ. Phys. 2022 190 (2022) [doi:10.1007/JHEP10(2022)190, arXiv:2204.02992]
See also
See also
- Mohammad Garousi, Minimal gauge invariant couplings at order ℓ p 6\ell^6_p in M-theory (arXiv:2102.00639)
Discussion in view of the Starobinsky model of cosmic inflation is in
-
Katrin Becker, Melanie Becker, Supersymmetry Breaking, M-Theory and Fluxes, JHEP 0107:038,2001 (arXiv:hep-th/0107044)
-
Kazuho Hiraga, Yoshifumi Hyakutake, Inflationary Cosmology via Quantum Corrections in M-theory (arXiv:1809.04724)
-
Kazuho Hiraga, Yoshifumi Hyakutake, Scalar Cosmological Perturbations in M-theory with Higher Derivative Corrections (arxiv:1910.12483)
and in view of de Sitter spacetime vacua:
- Johan Blåbäck, Ulf Danielsson, Giuseppe Dibitetto, Suvendu Giri, Constructing stable de Sitter in M-theory from higher curvature corrections (arXiv:1902.04053)
Scattering amplitudes and Effective action
Computation of Feynman amplitudes/scattering amplitudes and effective action in 11d supergravity:
-
Stanley Deser, Domenico Seminara, Counterterms/M-theory Corrections to D=11 Supergravity, Phys.Rev.Lett.82:2435-2438, 1999 (arXiv:hep-th/9812136)
-
Stanley Deser, Domenico Seminara, Tree Amplitudes and Two-loop Counterterms in D=11 Supergravity, Phys.Rev.D62:084010, 2000 (arXiv:hep-th/0002241)
-
L. Anguelova, P. A. Grassi, P. Vanhove, Covariant One-Loop Amplitudes in D=11D=11, Nucl. Phys. B702 (2004) 269-306 (arXiv:hep-th/0408171)
-
Kasper Peeters, Jan Plefka, Steffen Stern, Higher-derivative gauge field terms in the M-theory action, JHEP 0508 (2005) 095 (arXiv:hep-th/0507178)
-
Hamid R. Bakhtiarizadeh, Gauge field corrections to eleven dimensional supergravity via dimensional reduction (arXiv:1711.11313)
Truncations and compactifications
Kaluza-Klein compactifications of supergravity and its consistent truncations:
- Mike Duff, Bengt Nilsson, Christopher Pope, Kaluza-Klein supergravity, Physics Reports Volume 130, Issues 1–2, January 1986, Pages 1-142 (spire:229417, doi:10.1016/0370-1573(86)90163-8)
Discussion of Freund-Rubin compactifications:
- Hermann Nicolai, Krzysztof Pilch, Consistent truncation of d=11d = 11 supergravity on AdS 4×S 7AdS_4 \times S^7, JHEP 03 (2012) 099 (arXiv:1112.6131)
Topology and anomaly cancellation
Discussion of quantum anomaly cancellation and Green-Schwarz mechanism in 11D supergravity includes the following articles. (For more see at M5-brane – anomaly cancellation).
-
Edward Witten, On Flux Quantization In M-Theory And The Effective Action (arXiv:hep-th/9609122)
-
Edward Witten, Five-Brane Effective Action In M-Theory, J.Geom.Phys.22:103-133, 1997 (arXiv:hep-th/9610234)
-
Dan Freed, Jeff Harvey, Ruben Minasian, Greg Moore, Gravitational Anomaly Cancellation for M-Theory Fivebranes, Adv.Theor.Math.Phys.2:601-618, 1998 (arXiv:hep-th/9803205)
-
Adel Bilal, Steffen Metzger, Anomaly cancellation in M-theory: a critical review, Nucl.Phys. B675 (2003) 416-446 (arXiv:hep-th/0307152)
-
Ibrahima Bah, Federico Bonetti, Ruben Minasian, Emily Nardoni, Class 𝒮\mathcal{S} Anomalies from M-theory Inflow (arXiv:1812.04016)
-
Daniel Freed, Two nontrivial index theorems in odd dimensions (arXiv:dg-ga/9601005)
-
Adel Bilal, Steffen Metzger, Anomaly cancellation in M-theory: a critical review (arXiv:hep-th/0307152)
-
Daniel S. Freed, Michael J. Hopkins, Consistency of M-Theory on nonorientable manifolds, The Quarterly Journal of Mathematics 72 1-2 (2021) 603–671 [arXiv:1908.09916, doi:10.1093/qmath/haab007]
-
Fei Han, Ruizhi Huang, Kefeng Liu, Weiping Zhang, Cubic forms, anomaly cancellation and modularity, Advances in Mathematics 394 (2022) 108023 [arXiv:2005.02344, doi:10.1016/j.aim.2021.108023]
Description by exceptional generalized geometry
- Paulo Pires Pacheco, Daniel Waldram, M-theory, exceptional generalised geometry and superpotentials (arXiv:0804.1362)
Review of U-duality and exceptional generalized geometry in KK-compactification of D=11 supergravity:
- Henning Samtleben, 11D Supergravity and Hidden Symmetries, in Handbook of Quantum Gravity, Springer (2023) [arXiv:2303.12682]
Last revised on February 12, 2025 at 18:27:04. See the history of this page for a list of all contributions to it.