ABJM theory in nLab
- ️Invalid Date
Context
∞\infty-Chern-Simons theory
Ingredients
Definition
Examples
-
For semisimple Lie algebra targets
-
For discrete group targets
-
For discrete 2-group targets
-
For Lie 2-algebra targets
- BF-theory coupled to topological Yang-Mills theory
-
For targets extending the super Poincare Lie algebra
(such as the supergravity Lie 3-algebra, the supergravity Lie 6-algebra)
-
Chern-Simons-supergravity
-
for higher abelian targets
-
for symplectic Lie n-algebroid targets
-
for the L ∞L_\infty-structure on the BRST complex of the closed string:
-
higher dimensional Chern-Simons theory
-
-
topological AdS7/CFT6-sector
-
String theory
Ingredients
Critical string models
Extended objects
Topological strings
Backgrounds
Phenomenology
Contents
Idea
The ABJM model (ABJM 08) is an 𝒩=6\mathcal{N} = 6 3d superconformal gauge field theory involving Chern-Simons theory with gauge group SU(N) and coupled to matter fields. For Chern-Simons level kk it is supposed to describe the worldvolume theory of NN coincident black M2-branes at an ℤ/k\mathbb{Z}/k-cyclic group orbifold singularity with near-horizon geometry AdS 4×S 7/(ℤ/k)AdS_4 \times S^7/(\mathbb{Z}/k) (see at M2-branes – As a black brane).
dd | NN | superconformal super Lie algebra | R-symmetry | black brane worldvolume superconformal field theory via AdS-CFT |
---|---|---|---|---|
A3A\phantom{A}3\phantom{A} | A2k+1A\phantom{A}2k+1\phantom{A} | AB(k,2)≃\phantom{A}B(k,2) \simeq osp(2k+1|4)A(2k+1 \vert 4)\phantom{A} | ASO(2k+1)A\phantom{A}SO(2k+1)\phantom{A} | |
A3A\phantom{A}3\phantom{A} | A2kA\phantom{A}2k\phantom{A} | AD(k,2)≃\phantom{A}D(k,2)\simeq osp(2k|4)A(2k \vert 4)\phantom{A} | ASO(2k)A\phantom{A}SO(2k)\phantom{A} | M2-brane D=3 SYM BLG model ABJM model |
A4A\phantom{A}4\phantom{A} | Ak+1A\phantom{A}k+1\phantom{A} | AA(3,k)≃𝔰𝔩(4|k+1)A\phantom{A}A(3,k)\simeq \mathfrak{sl}(4 \vert k+1)\phantom{A} | AU(k+1)A\phantom{A}U(k+1)\phantom{A} | D3-brane D=4 N=4 SYM D=4 N=2 SYM D=4 N=1 SYM |
A5A\phantom{A}5\phantom{A} | A1A\phantom{A}1\phantom{A} | AF(4)A\phantom{A}F(4)\phantom{A} | ASO(3)A\phantom{A}SO(3)\phantom{A} | D4-brane D=5 SYM |
A6A\phantom{A}6\phantom{A} | AkA\phantom{A}k\phantom{A} | AD(4,k)≃\phantom{A}D(4,k) \simeq osp(8|2k)A(8 \vert 2k)\phantom{A} | ASp(k)A\phantom{A}Sp(k)\phantom{A} | M5-brane D=6 N=(2,0) SCFT D=6 N=(1,0) SCFT |
(Shnider 88, also Nahm 78, see Minwalla 98, section 4.2)
For k=2k = 2 the supersymmetry of the ABJM model increases to 𝒩=8\mathcal{N} = 8. For k=2k = 2 and N=2N = 2 the ABJM model reduces to the BLG model (ABJM 08, section 2.6).
Due to the matter coupling, the ABJM model is no longer a topological field theory as pure Chern-Simons is, but it is still a conformal field theory. As such it is thought to correspond under AdS-CFT duality to M-theory on AdS4 ×\times S7/ℤ/k\mathbb{Z}/k (see also MFFGME 09).
Notice that the worldvolume SU(N)SU(N) gauge group enhancement at an ℤ k\mathbb{Z}_k-ADE singularity is akin to the gauge symmetry enhancement of the effective field theory for M-theory on G₂-manifolds at the same kind of singularities (see at M-theory on G₂-manifolds – Nonabelian gauge groups).
More generally, classification of the near horizon geometry of smooth (i.e. non-orbifold) ≥12\geq \tfrac{1}{2} BPS black M2-brane-solutions of the equations of motion of 11-dimensional supergravity shows that these are the Cartesian product AdS 4×(S 7/G)AdS_4 \times (S^7/G) of 4-dimensional anti de Sitter spacetime with a 7-dimensional spherical space form S 7/G^S^7/{\widehat{G}} with spin structure and N≥4N \geq 4, for G^\widehat{G} a finite subgroup of SU(2) (MFFGME 09, see here).
NN Killing spinors on spherical space form S 7/G^S^7/\widehat{G} | AAG^=\phantom{AA}\widehat{G} = | spin-lift of subgroup of isometry group of 7-sphere | 3d superconformal gauge field theory on back M2-branes with near horizon geometry AdS 4×S 7/G^AdS_4 \times S^7/\widehat{G} |
---|---|---|---|
AAN=8AA\phantom{AA}N = 8\phantom{AA} | AAℤ 2\phantom{AA}\mathbb{Z}_2 | cyclic group of order 2 | BLG model |
AAN=7AA\phantom{AA}N = 7\phantom{AA} | — | — | — |
AAN=6AA\phantom{AA}N = 6\phantom{AA} | AAℤ k>2\phantom{AA}\mathbb{Z}_{k\gt 2} | cyclic group | ABJM model |
AAN=5AA\phantom{AA}N = 5\phantom{AA} | AA2D k+2\phantom{AA}2 D_{k+2} 2T2 T, 2O2 O, 2I2 I | binary dihedral group, binary tetrahedral group, binary octahedral group, binary icosahedral group | (HLLLP 08a, BHRSS 08) |
AAN=4AA\phantom{AA}N = 4\phantom{AA} | A2D k+2\phantom{A}2 D_{k+2} 2O2 O, 2I2 I | binary dihedral group, binary octahedral group, binary icosahedral group | (HLLLP 08b, Chen-Wu 10) |
- José Figueroa-O'Farrill et al. 2009 (arXiv:0909.0163, pdf slides)
Properties
AdS/CFT duality
Under holographic duality supposed to be related to M-theory on AdS 4×S 7/ℤ kAdS_4 \times S^7 / \mathbb{Z}_k.
Boundary conditions
Discussion of boundary conditions of the BLG model, leading to brane intersection with M-wave, M5-brane and MO9-brane is in (Chu-Smith 09, BPST 09).
dd | NN | superconformal super Lie algebra | R-symmetry | black brane worldvolume superconformal field theory via AdS-CFT |
---|---|---|---|---|
A3A\phantom{A}3\phantom{A} | A2k+1A\phantom{A}2k+1\phantom{A} | AB(k,2)≃\phantom{A}B(k,2) \simeq osp(2k+1|4)A(2k+1 \vert 4)\phantom{A} | ASO(2k+1)A\phantom{A}SO(2k+1)\phantom{A} | |
A3A\phantom{A}3\phantom{A} | A2kA\phantom{A}2k\phantom{A} | AD(k,2)≃\phantom{A}D(k,2)\simeq osp(2k|4)A(2k \vert 4)\phantom{A} | ASO(2k)A\phantom{A}SO(2k)\phantom{A} | M2-brane D=3 SYM BLG model ABJM model |
A4A\phantom{A}4\phantom{A} | Ak+1A\phantom{A}k+1\phantom{A} | AA(3,k)≃𝔰𝔩(4|k+1)A\phantom{A}A(3,k)\simeq \mathfrak{sl}(4 \vert k+1)\phantom{A} | AU(k+1)A\phantom{A}U(k+1)\phantom{A} | D3-brane D=4 N=4 SYM D=4 N=2 SYM D=4 N=1 SYM |
A5A\phantom{A}5\phantom{A} | A1A\phantom{A}1\phantom{A} | AF(4)A\phantom{A}F(4)\phantom{A} | ASO(3)A\phantom{A}SO(3)\phantom{A} | D4-brane D=5 SYM |
A6A\phantom{A}6\phantom{A} | AkA\phantom{A}k\phantom{A} | AD(4,k)≃\phantom{A}D(4,k) \simeq osp(8|2k)A(8 \vert 2k)\phantom{A} | ASp(k)A\phantom{A}Sp(k)\phantom{A} | M5-brane D=6 N=(2,0) SCFT D=6 N=(1,0) SCFT |
(Shnider 88, also Nahm 78, see Minwalla 98, section 4.2)
References
Precursors
Precursor considerations in
- John Schwarz, Superconformal Chern-Simons Theories (arXiv:arXiv:hep-th/0411077
The lift of Dp-D(p+2)-brane bound states in string theory to M2-M5-brane bound states/E-strings in M-theory, under duality between M-theory and type IIA string theory+T-duality, via generalization of Nahm's equation (this eventually motivated the BLG-model/ABJM model):
-
Anirban Basu, Jeffrey Harvey, The M2-M5 Brane System and a Generalized Nahm’s Equation, Nucl.Phys. B713 (2005) 136-150 (arXiv:hep-th/0412310)
-
Jonathan Bagger, Neil Lambert, Sunil Mukhi, Constantinos Papageorgakis, Section 2.2.1 of Multiple Membranes in M-theory, Physics Reports, Volume 527, Issue 1, 1 June 2013, Pages 1-100 (arXiv:1203.3546, doi:10.1016/j.physrep.2013.01.006)
This inspired the BLG model:
-
Jonathan Bagger, Neil Lambert, Modeling Multiple M2’s, Phys. Rev. D75, 045020 (2007). (hep-th/0611108).
-
Jonathan Bagger, Neil Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D77, 065008 (2008). (arXiv:0711.0955).
General
The original article on the N=6N=6-case is
- Ofer Aharony, Oren Bergman, Daniel Jafferis, Juan Maldacena, N=6N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 0810:091,2008, DOI:10.1088/1126-6708/2008/10/091 (arXiv:0806.1218)
and for discrete torsion in the supergravity C-field in
-
Ofer Aharony, Oren Bergman, Daniel Jafferis, Fractional M2-branes, JHEP 0811:043, 2008 (arXiv:0807.4924)
(on fractional M2-branes)
inspired by the N=8N=8-case of the BLG model (Bagger-Lambert 06)
The N=5N=5-case is discussed in
-
Kazuo Hosomichi, Ki-Myeong Lee, Sangmin Lee, Sungjay Lee, Jaemo Park, 𝒩=5,6\mathcal{N}=5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 0809:002, 2008 (arXiv:0806.4977)
-
Ofer Aharony, Oren Bergman, Daniel Jafferis, Fractional M2-branes, JHEP 0811:043, 2008 (arXiv:0807.4924)
The N=4N=4-case is discussed in
-
Kazuo Hosomichi, Ki-Myeong Lee, Sangmin Lee, Sungjay Lee, Jaemo Park, \mathcal{N}=4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP 0807:091,2008 (arXiv:0805.3662)
-
Fa-Min Chen, Yong-Shi Wu, Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories, Phys.Rev.D82:106012, 2010 (arXiv:1007.5157)
More on the role of discrete torsion in the supergravity C-field is in
- Mauricio Romo, Aspects of ABJM orbifolds with discrete torsion, J. High Energ. Phys. (2011) 2011 (arXiv:1011.4733)
Discussion of boundary conditions leading to brane intersection laws with the M-wave, black M5-brane and MO9 is in
-
Chong-Sun Chu, Douglas J. Smith, Multiple Self-Dual Strings on M5-Branes, JHEP 1001:001, 2010 (arXiv:0909.2333)
-
David Berman, Malcolm J. Perry, Ergin Sezgin, Daniel C. Thompson, Boundary Conditions for Interacting Membranes, JHEP 1004:025, 2010 [arXiv:0912.3504, doi:10.1007/JHEP04(2010)025]
As a matrix model,:
- Asadig Mohammed, Jeff Murugan, Horatiu Nastase, Looking for a Matrix model of ABJM, Phys. Rev. D82:086004, 2010 (arXiv:1003.2599)
Review:
-
Igor Klebanov, Giuseppe Torri, M2-branes and AdS/CFT, Int.J.Mod.Phys.A25:332-350, 2010 (arXiv;0909.1580)
-
Neil B. Copland, Introductory Lectures on Multiple Membranes (arXiv:1012.0459)
-
Neil Lambert, M-Theory and Maximally Supersymmetric Gauge Theories, Annual Review of Nuclear and Particle Science, Vol. 62:285-313 (arXiv:1203.4244, doi:10.1146/annurev-nucl-102010-130248)
-
Jonathan Bagger, Neil Lambert, Sunil Mukhi, Constantinos Papageorgakis, Multiple Membranes in M-theory, Physics Reports, Volume 527, Issue 1, 2013 (arXiv:1203.3546, doi:10.1016/j.physrep.2013.01.006)
-
Neil Lambert, Lessons from M2’s and Hopes for M5’s, Proceedings of the LMS-EPSRC Durham Symposium: Higher Structures in M-Theory 2018 Fortschritte der Physik, 2019 (arXiv:1903.02825, slides pdf, video recording)
-
Manikantt Mummalaneni: AdS4/CFT3: ABJM Theory, Brane Geometry, Correlators and Mellin Space [arXiv:2408.11835]
Discussion of Montonen-Olive duality in D=4 super Yang-Mills theory via ABJM-model as D3-brane model after double dimensional reduction followed by T-duality:
- Koji Hashimoto, Ta-Sheng Tai, Seiji Terashima, Toward a Proof of Montonen-Olive Duality via Multiple M2-branes, JHEP 0904:025, 2009 (arxiv:0809.2137)
Discussion of extension to boundary field theory (describing M2-branes ending on M5-branes) includes
- David Berman, Daniel Thompson, Membranes with a boundary, Nucl.Phys.B820:503-533,2009 (arXiv:0904.0241)
A kind of double dimensional reduction of the ABJM model to something related to type II superstrings and D1-branes is discussed in
- Horatiu Nastase, Constantinos Papageorgakis, Dimensional reduction of the ABJM model, JHEP 1103:094,2011 (arXiv:1010.3808)
Discussion of the ABJM model in Horava-Witten theory and reducing to heterotic strings is in
- Neil Lambert, Heterotic M2-branes, Physics Letters B Volume 749, 7 October 2015, Pages 363-367 (arXiv:1507.07931)
Discussion of the model as a higher gauge theory (due to its coupling to the supergravity C-field) is in
-
Sam Palmer, Christian Saemann, section 2 of M-brane Models from Non-Abelian Gerbes, JHEP 1207:010, 2012 (arXiv:1203.5757)
-
Sam Palmer, Christian Saemann, The ABJM Model is a Higher Gauge Theory, IJGMMP 11 (2014) 1450075 (arXiv:1311.1997)
Classification of the possible superpotentials? via representation theory is due to
- Paul de Medeiros, José Figueroa-O'Farrill, Elena Méndez-Escobar, Superpotentials for superconformal Chern-Simons theories from representation theory, J. Phys. A 42:485204,2009 (arXiv:0908.2125)
and derived from this a classification of the possible orbifolding (see at spherical space form: 7d with spin structure) is in
-
Paul de Medeiros, José Figueroa-O'Farrill, Sunil Gadhia, Elena Méndez-Escobar, Half-BPS quotients in M-theory: ADE with a twist, JHEP 0910:038,2009 (arXiv:0909.0163, pdf slides)
-
Paul de Medeiros, José Figueroa-O'Farrill, Half-BPS M2-brane orbifolds, Adv. Theor. Math. Phys. Volume 16, Number 5 (2012), 1349-1408. (arXiv:1007.4761, eujclid:atmp/1408561553)
-
José Figueroa-O'Farrill, M2-branes, ADE and Lie superalgebras, talk at IPMU 2009 (pdf)
Discussion via the conformal bootstrap:
-
Nathan B. Agmon, Shai Chester, Silviu S. Pufu, The M-theory Archipelago (arXiv:1907.13222)
-
Damon J. Binder, Shai Chester, Max Jerdee, Silviu S. Pufu, The 3d 𝒩=6\mathcal{N}=6 Bootstrap: From Higher Spins to Strings to Membranes (arXiv:2011.05728)
See also
-
Nadav Drukker, Marcos Marino, Pavel Putrov, From weak to strong coupling in ABJM theory (arXiv:1007.3837)
-
Shai Chester, Silviu S. Pufu, Xi Yin, The M-Theory S-Matrix From ABJM: Beyond 11D Supergravity (arXiv:1804.00949)
Computation of black hole entropy in 4d via AdS4-CFT3 duality from holographic entanglement entropy in the ABJM theory for the M2-brane is discussed in
- Jun Nian, Xinyu Zhang, Entanglement Entropy of ABJM Theory and Entropy of Topological Black Hole (arXiv:1705.01896)
Discussion of higher curvature corrections in the abelian case:
- Shin Sasaki, On Non-linear Action for Gauged M2-brane, JHEP 1002:039, 2010 (arxiv:0912.0903)
On abelian anyons (or at least Aharonov-Bohm phases described holographically via the ABJM model:
- Shoichi Kawamoto, Feng-Li Lin, Holographic Anyons in the ABJM Theory, JHEP 1002:059 (2010) [arXiv:0910.5536]
Mass deformation
The Myers effect in M-theory for M2-branes polarizing into M5-branes of (fuzzy) 3-sphere-shape (M2-M5 brane bound states):
-
Iosif Bena, The M-theory dual of a 3 dimensional theory with reduced supersymmetry, Phys. Rev. D62:126006, 2000 (arXiv:hep-th/0004142)
-
Masato Arai, Claus Montonen, Shin Sasaki, Vortices, Q-balls and Domain Walls on Dielectric M2-branes, JHEP 0903:119, 2009 (arXiv:0812.4437)
-
Iosif Bena, Mariana Graña, Stanislav Kuperstein, Stefano Massai, Tachyonic Anti-M2 Branes, JHEP 1406:173, 2014 (arXiv:1402.2294)
With emphasis on the role of the Page charge/Hopf WZ term:
- Krzysztof Pilch, Alexander Tyukov, Nicholas Warner, Flowing to Higher Dimensions: A New Strongly-Coupled Phase on M2 Branes, JHEP11 (2015) 170 (arXiv:1506.01045)
Via the mass-deformed ABJM model:
-
Jaume Gomis, Diego Rodriguez-Gomez, Mark Van Raamsdonk, Herman Verlinde, A Massive Study of M2-brane Proposals, JHEP 0809:113, 2008 (arXiv:0807.1074)
-
Jonathan Bagger, Neil Lambert, Sunil Mukhi, Constantinos Papageorgakis, Section 6.4 of: Multiple Membranes in M-theory, Physics Reports, Volume 527, Issue 1, 1 June 2013, Pages 1-100 (arXiv:1203.3546, doi:10.1016/j.physrep.2013.01.006)
The corresponding D2-NS5 bound state under duality between M-theory and type IIA string theory:
- Iosif Bena, Aleksey Nudelman, Warping and vacua of (S)YM 3+1(S)YM_{3+1}, Phys. Rev. D62 (2000) 086008 (arXiv:hep-th/0005163)
On Wilson line-quantum observables and bosonization in the ABJM model:
- Amit Sever, Line Operators in Chern-Simons-Matter Theories and Bosonization in Three Dimensions, talk at Strings 2022 [indico:4940843, slides, video]
Last revised on August 23, 2024 at 05:15:59. See the history of this page for a list of all contributions to it.