ADE singularity in nLab
Context
Geometry
higher geometry / derived geometry
Ingredients
Concepts
-
geometric little (∞,1)-toposes
-
geometric big (∞,1)-toposes
Constructions
Examples
-
derived smooth geometry
Theorems
Contents
- Idea
- Properties
- Resolution by spheres touching along a Dynkin diagram
- From coincident KK-monopoles
- Bridgeland stability conditions
- Related concepts
- References
- General
- Via Bridgeland stability
- In string theory
- M-theory on ADE-orbifolds reducing to D6-branes in type II
- Heterotic M-theory on ADE-orbifolds
- Heterotic string theory on ADE-orbifolds
- Type II-string theory on ADE-orbifolds
- Type I′I'-string theory on ADE-orbifolds
- Type II-string theory on ADE-orbifolds
- M-theory on G 2G_2-orbifolds with ADE-singularities
- F-theory with ADE-singularities
Idea
An ADE singularity is an orbifold fixed point locally of the form ℂ 2⫽Γ\mathbb{C}^2\sslash\Gamma with Γ↪SU(2)\Gamma \hookrightarrow SU(2) a finite subgroup of SU(2) given by the ADE classification (and SU(2)SU(2) is understood with its defining linear action on the complex vector space ℂ 2\mathbb{C}^2).
Properties
Resolution by spheres touching along a Dynkin diagram
The blow-up of an ADE-singularity is given by a union of Riemann spheres that touch each other such as to form the shape of the Dynkin diagram whose A-D-E label corresponds to that of the given finite subgroup of SU(2).
This statement is originally due to (duVal 1934 I, p. 1-3 (453-455)). A description in terms of hyper-Kähler geometry is due to Kronheimer 89a.
Quick survey of this fact is in Reid 87, a textbook account is Slodowy 80.
In string theory this fact is interpreted in terms of gauge enhancement of the M-theory-lift of coincident black D6-branes to an MK6 at an ADE-singularity (Sen 97):
graphics grabbed from HSS18
See at M-theory lift of gauge enhancement on D6-branes for more.
\,
From coincident KK-monopoles
geometry transverse to KK-monopoles | Riemannian metric | remarks |
---|---|---|
Taub-NUT space: geometry transverse to N+1N+1 distinct KK-monopoles at r→ i∈ℝ 3i∈{1,⋯,N+1}\vec r_i \in \mathbb{R}^3 \;\; i \in \{1, \cdots, N+1\} | ds TaubNUT 2≔U −1(dx 4+ω→⋅dr→) 2+U(dr→) 2, r→∈ℝ 3,x 4∈ℝ/(2πRℤ) U≔1+∑i=1N+1U i,AAω→≔∑i=1N+1ω→ i U i≔R/2|r→−r→ i|,AA∇→×ω→=∇→U i\array{d s^2_{TaubNUT} \coloneqq U^{-1}(d x^4 + \vec \omega \cdot d \vec r)^2 + U (d \vec r)^2 \,, \\ \vec r \in \mathbb{R}^3,\, x^4 \in \mathbb{R}/(2 \pi R\mathbb{Z}) \\ U \coloneqq 1 + \underoverset{i = 1}{N+1}{\sum} U_i\,, \phantom{AA} \vec \omega \coloneqq \underoverset{i = 1}{N+1}{\sum} \vec \omega_i \\ U_i \coloneqq \frac{R/2}{ {\vert \vec r - \vec r_i\vert} }\,, \phantom{AA} \vec \nabla \times \vec \omega= \vec \nabla U_i} | (e.g. Sen 97b, Sect. 2) |
ALE space Taub-NUT close to NN close-by KK-monopoles e.g. close to r→=0\vec r = 0: |r→ i|R/2,|r→|R/2≪1\frac{{\vert \vec r_i\vert}}{R/2}, \frac{{\vert \vec r\vert}}{R/2} \ll 1 | ds ALE 2≔U′ −1(dx 4+ω→⋅dr→) 2+U′(dr→) 2, r→∈ℝ 3,x 4∈ℝ/(2πRℤ) U′≔∑i=1N+1U′ i,AAω→≔∑i=1N+1ω→ i U′ i≔R/2|r→−r→ i|,AA∇→×ω→=∇→U i\array{d s^2_{ALE} \coloneqq U'^{-1}(d x^4 + \vec \omega \cdot d \vec r)^2 + U' (d \vec r)^2 \,, \\ \vec r \in \mathbb{R}^3,\, x^4 \in \mathbb{R}/(2 \pi R\mathbb{Z}) \\ U' \coloneqq \underoverset{i = 1}{N+1}{\sum} U'_i\,, \phantom{AA} \vec \omega \coloneqq \underoverset{i = 1}{N+1}{\sum} \vec \omega_i \\ U'_i \coloneqq \frac{R/2}{ {\vert \vec r - \vec r_i\vert} }\,, \phantom{AA} \vec \nabla \times \vec \omega= \vec \nabla U_i} | e.g. via Euler angles: ω→=(N+1)R/2(cos(θ)−1)dψ\vec \omega = (N+1)R/2(\cos(\theta)-1) d\psi (e.g. Asano 00, Sect. 2) |
A NA_N-type ADE singularity: ALE space in the limit where all N+1N+1 KK-monopoles coincide at vecr i=0vec r_i = 0 | ds A NSing 2≔|r→|(N+1)R/2(dx 4+ω→⋅dr→) 2+(N+1)R/2|r→|(dr→) 2, r→∈ℝ 3,x 4∈ℝ/(2πRℤ)\array{d s^2_{A_N Sing} \coloneqq \frac{\vert\vec r\vert }{(N+1)R/2}(d x^4 + \vec \omega \cdot d \vec r)^2 + \frac{ (N+1)R/2}{\vert \vec r\vert} (d \vec r)^2 \,, \\ \vec r \in \mathbb{R}^3,\, x^4 \in \mathbb{R}/(2 \pi R\mathbb{Z}) } | (e.g. Asano 00, Sect. 3) |
Bridgeland stability conditions
For G ADE⊂SU(2)G_{ADE} \subset SU(2) a finite subgroup of SU(2), let X˜\tilde X be the resolution of the corresponding ADE-singularity as above.
Then the connected component of the space of Bridgeland stability conditions on the bounded derived category of coherent sheaves over X˜\tilde X can be described explicitly (Bridgeland 05).
Specifically for type-A singularities the space of stability conditions is in fact connected and simply-connected topological space (Ishii-Ueda-Uehara 10).
Brief review is in Bridgeland 09, section 6.3.
References
General
Original articles include
-
Patrick du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. I, Proceedings of the Cambridge Philosophical Society, 30 (4): 453–459 (1934a) (doi:10.1017/S030500410001269X)
-
Patrick du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. II, Proceedings of the Cambridge Philosophical Society, 30 (4): 460–465 (1934) (doi:10.1017/S0305004100012706)
-
Patrick du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. III, Proceedings of the Cambridge Philosophical Society, 30 (4): 483–491 (1934) (doi:10.1017/S030500410001272X)
Textbook accounts include
-
Alan H. Durfee, Fifteen characterizations of rational double points and simple critical points, L’Enseignement Mathématique Volume: 25 (1979) (doi:10.5169/seals-50375, pdf)
-
Peter Slodowy, Simple singularities and simple algebraic groups, in Lecture Notes in Mathematics 815, Springer, Berlin, 1980.
-
Klaus Lamotke, chapter IV of Regular Solids and Isolated Singularities, Vieweg, Braunschweig, Wiesbaden 1986.
-
Miles Reid, Young persons guide to canonical singularities, in Spencer Bloch (ed.),Algebraic geometry – Bowdoin 1985, Part 1, Proc. Sympos. Pure Math. 46 Part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414 (pdf)
(The last formula on page 409 has a typo: there should be no rr in the denominator.)
Discussion of resolution of ADE-singularities in terms of hyper-Kähler geometry:
-
Peter Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. Volume 29, Number 3 (1989), 665-683. (euclid:1214443066)
-
Peter Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. Volume 29, Number 3 (1989), 685-697 (euclid:1214443067)
and in terms of preprojective algebras:
- William Crawley-Boevey, Martin P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J. Volume 92, Number 3 (1998), 605-635 (euclid:1077231679)
Reviews and lecture notes:
-
Igor Burban, Du Val Singularities (pdf)
-
Miles Reid, The Du Val Singularities A nA_n, D nD_n, E 6E_6, E 7E_7, E 8E_8 (pdf)
-
Anda Degeratu, Crepant Resolutions of Calabi-Yau Orbifolds, 2004 (pdf)
-
Kyler Siegel, section 6 of The Ubiquity of the ADE classification in Nature , 2014 (pdf)
-
MathOverflow, Resolving ADE singularities by blowing up
On the Chen-Ruan orbifold cohomology of ADE-singularities:
-
Fabio Perroni, Orbifold Cohomology of ADE-singularities (arXiv:0510528)
-
Fabio Perroni, Chen-Ruan cohomology of ADE-singularities, International Journal of Mathematics, Vol. 18, No. 9 (2007) 1009-1059 (arXiv:math/0605207, doi:10.1142/S0129167X07004436)
Families of examples of G₂ orbifolds with ADE singularities are constructed in
-
Frank Reidegeld, G 2G_2-orbifolds from K3 surfaces with ADE-singularities (arXiv:1512.05114)
-
Frank Reidegeld, G 2G_2-orbifolds with ADE-singularities (pdf)
Riemannian geometry of manifolds with ADE singularities is discussed in
- Boris Botvinnik, Jonathan Rosenberg, Positive scalar curvature on manifolds with fibered singularities (arXiv:1808.06007)
See also
- Wikipedia, du Val singularity
Via Bridgeland stability
Discussion of Bridgeland stability conditions for (resolutions of) ADE singularities includes:
-
Tom Bridgeland, Stability conditions and Kleinian singularities, International Mathematics Research Notices 2009.21 (2009): 4142-4157 (arXiv:0508257)
-
Akira Ishii, Kazushi Ueda, Hokuto Uehara, Stability conditions on A nA_n-singularities, Journal of Differential Geometry 84 (2010) 87-126 (arXiv:math/0609551)
and specifically over Dynkin quivers
-
Yu Qiu, Def. 2.1 Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math., 269 (2015), pp 220-264 (arXiv:1111.1010)
-
Tom Bridgeland, Yu Qiu, Tom Sutherland, Stability conditions and the A 2A_2 quiver (arXiv:1406.2566)
In string theory
Discussion of ADE-singularities in string theory on orbifolds:
M-theory on ADE-orbifolds reducing to D6-branes in type II
M-theory lift of gauge enhancement on D6-branes:
-
Ashoke Sen, A Note on Enhanced Gauge Symmetries in M- and String Theory, JHEP 9709:001,1997 (arXiv:hep-th/9707123)
-
Luis Ibáñez, Angel Uranga, Section 6.3.3 of: String Theory and Particle Physics – An Introduction to String Phenomenology, Cambridge University Press 2012
Heterotic M-theory on ADE-orbifolds
heterotic M-theory on ADE-orbifolds:
-
Ashoke Sen, A Note on Enhanced Gauge Symmetries in M- and String Theory, JHEP 9709:001,1997 (arXiv:hep-th/9707123)
-
Michael Faux, Dieter Lüst, Burt Ovrut, Intersecting Orbifold Planes and Local Anomaly Cancellation in M-Theory, Nucl. Phys. B554: 437-483, 1999 (arXiv:hep-th/9903028)
-
Michael Faux, Dieter Lüst, Burt Ovrut, Local Anomaly Cancellation, M-Theory Orbifolds and Phase-Transitions, Nucl. Phys. B589: 269-291, 2000 (arXiv:hep-th/0005251)
-
Michael Faux, Dieter Lüst, Burt Ovrut, An M-Theory Perspective on Heterotic K3 Orbifold Compactifications, Int. J. Mod. Phys. A18:3273-3314, 2003 (arXiv:hep-th/0010087)
-
Michael Faux, Dieter Lüst, Burt Ovrut, Twisted Sectors and Chern-Simons Terms in M-Theory Orbifolds, Int. J. Mod. Phys. A18: 2995-3014, 2003 (arXiv:hep-th/0011031)
-
Vadim Kaplunovsky, J. Sonnenschein, Stefan Theisen, S. Yankielowicz, On the Duality between Perturbative Heterotic Orbifolds and M-Theory on T 4/Z NT^4/Z_N, Nuclear Physics B Volume 590, Issues 1–2, 4 December 2000, Pages 123-160 Nuclear Physics B (arXiv:hep-th/9912144, doi:10.1016/S0550-3213(00)00460-0)
-
E. Gorbatov, Vadim Kaplunovsky, J. Sonnenschein, Stefan Theisen, S. Yankielowicz, On Heterotic Orbifolds, M Theory and Type I’ Brane Engineering, JHEP 0205:015, 2002 (arXiv:hep-th/0108135)
-
John Huerta, Hisham Sati, Urs Schreiber, Real ADE-equivariant (co)homotopy and Super M-branes, CMP (2019) (arXiv:1805.05987, doi:10.1007/s00220-019-03442-3)
Heterotic string theory on ADE-orbifolds
heterotic string theory on ADE-orbifolds:
-
Paul Aspinwall, David Morrison, Point-like Instantons on K3 Orbifolds, Nucl. Phys. B503 (1997) 533-564 (arXiv:hep-th/9705104)
-
Edward Witten, Heterotic String Conformal Field Theory And A-D-E Singularities, JHEP 0002:025, 2000 (arXiv:hep-th/9909229)
Type II-string theory on ADE-orbifolds
The observation that the worldsheet 2d CFT correspoding to a string probing (a D-brane on) an A κ−1A_{\kappa-1}-type singularity ℍ/ C κ+2\mathbb{H}/_{C_{\kappa + 2}} is the chiral WZW model for the affine Lie algebra su(2) at level κ−2\kappa - 2 (plus some trivial summands):
-
Hirosi OoguriCumrun Vafa, p. 10-12 of: Two-Dimensional Black Hole and Singularities of CY Manifolds, Nucl. Phys. B 463 (1996) 55-72 (arXiv:hep-th/9511164, doi:10.1016/0550-3213%2896%2900008-9)
-
Wolfgang Lerche, Carsten Andrew Lütken, Christoph Schweigert, p. 4 of: D-Branes on ALE Spaces and the ADE Classification of Conformal Field Theories, Nucl.Phys. B 622 (2002) 269-278 (doi:10.1016/S0550-3213%2801%2900613-7, arXiv:hep-th/0006247)
On how this 𝔰𝔲(2)^ κ−2\widehat{\mathfrak{su}(2)}^{\kappa-2}-CFT encodes the BPS states of SU ( κ ) SU(\kappa) -SYM on D3-branes transverse to the singularity:
- Wolfgang Lerche, On a Boundary CFT Description of Nonperturbative 𝒩=2\mathcal{N} = 2 Yang-Mills Theory (arXiv:hep-th/0006100)
An interpretation of this phenomenon, under the expected K-theory classification of D-brane charge, as due to the (somewhat neglected) sector of twisted equivariant K-theory where the twist is by an inner local system which may appear inside an A-type singularity:
- Hisham Sati, Urs Schreiber, (around p. 23 of) Anyonic defect branes in TED-K-theory (arXiv:2203.11838)
Type I′I'-string theory on ADE-orbifolds
type I' string theory on ADE-orbifolds
- Oren Bergman, Diego Rodriguez-Gomez, Section 3 of: 5d quivers and their AdS 6AdS_6 duals, JHEP07 (2012) 171 (arxiv:1206.3503)
Type II-string theory on ADE-orbifolds
type I string theory on ADE-orbifolds
- Kenneth Intriligator, New String Theories in Six Dimensions via Branes at Orbifold Singularities, Adv. Theor. Math. Phys.1:271-282, 1998 (arXiv:hep-th/9708117)
M-theory on G 2G_2-orbifolds with ADE-singularities
M-theory on G₂-manifolds\, with ADE-singularities:
-
Bobby Acharya, M theory, Joyce Orbifolds and Super Yang-Mills, Adv. Theor. Math. Phys. 3 (1999) 227-248 (arXiv:hep-th/9812205)
-
Bobby Acharya, On Realising N=1N=1 Super Yang-Mills in M theory (arXiv:hep-th/0011089)
-
Bobby Acharya, B. Spence, Flux, Supersymmetry and M theory on 7-manifolds (arXiv:hep-th/0007213)
-
Bobby Acharya, M Theory, G 2G_2-manifolds and Four Dimensional Physics, Classical and Quantum Gravity Volume 19 Number 22, 2002 (pdf)
-
Michael Atiyah, Juan Maldacena, Cumrun Vafa, An M-theory Flop as a Large N Duality, J. Math. Phys.42:3209-3220, 2001 (arXiv:hep-th/0011256)
-
Chris Beasley, Edward Witten, A Note on Fluxes and Superpotentials in M-theory Compactifications on Manifolds of G 2G_2 Holonomy, JHEP 0207:046 (2002) (arXiv:hep-th/0203061)
-
Michael Atiyah, Edward Witten M-Theory dynamics on a manifold of G 2G_2-holonomy, Adv. Theor. Math. Phys. 6 (2001) (arXiv:hep-th/0107177)
-
Edward Witten, Anomaly Cancellation On Manifolds Of G 2G_2 Holonomy (arXiv:hep-th/0108165)
-
Bobby Acharya, Edward Witten, Chiral Fermions from Manifolds of G 2G_2 Holonomy (arXiv:hep-th/0109152)
-
Ron Donagi, Martin Wijnholt: The M-Theory Three-Form and Singular Geometries [arXiv:2310.05838]
F-theory with ADE-singularities
F-theory with ADE-singularities
- Paul Aspinwall, David Morrison, Point-like Instantons on K3 Orbifolds, Nucl. Phys. B503 (1997) 533-564 (arXiv:hep-th/9705104)
See also at F-branes – table
Last revised on August 23, 2024 at 11:35:34. See the history of this page for a list of all contributions to it.