orthogonal group in nLab
Context
Group Theory
- group, ∞-group
- group object, group object in an (∞,1)-category
- abelian group, spectrum
- super abelian group
- group action, ∞-action
- representation, ∞-representation
- progroup
- homogeneous space
Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
∞\infty-Lie theory
∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
∞\infty-Lie groupoids
∞\infty-Lie groups
∞\infty-Lie algebroids
∞\infty-Lie algebras
Contents
Definition
For n∈ℕn \in \mathbb{N} the orthogonal group O(n)O(n) is the group of isometries of a real nn-dimensional Hilbert space. This is naturally a Lie group. This is isomorphic to the group of n×nn \times n orthogonal matrices.
More generally there is a notion of orthogonal group of an inner product space.
The analog for complex Hilbert spaces is the unitary group.
Properties
Compactness
Homotopy groups
Proposition
For n,N∈ℕn, N \in \mathbb{N}, n≤Nn \leq N, then the canonical inclusion of orthogonal groups
O(n)↪O(N) O(n) \hookrightarrow O(N)
is an (n-1)-equivalence, hence induces an isomorphism on homotopy groups in degrees <n−1\lt n-1 and a surjection in degree n−1n-1.
Proof
Consider the coset quotient projection
O(n)⟶O(n+1)⟶O(n+1)/O(n). O(n) \longrightarrow O(n+1) \longrightarrow O(n+1)/O(n) \,.
By prop. and by this corollary, the projection O(n+1)→O(n+1)/O(n)O(n+1)\to O(n+1)/O(n) is a Serre fibration. Furthermore, example identifies the coset with the n-sphere
S n≃O(n+1)/O(n). S^{n}\simeq O(n+1)/O(n) \,.
Therefore the long exact sequence of homotopy groups of the fiber sequence O(n)→O(n+1)→S nO(n)\to O(n+1)\to S^n looks like
⋯→π •+1(S n)⟶π •(O(n))⟶π •(O(n+1))⟶π •(S n)→⋯ \cdots \to \pi_{\bullet+1}(S^n) \longrightarrow \pi_\bullet(O(n)) \longrightarrow \pi_\bullet(O(n+1)) \longrightarrow \pi_\bullet(S^n) \to \cdots
Since π <n(S n)=0\pi_{\lt n}(S^n) = 0, this implies that
π <n−1(O(n))⟶≃π <n−1(O(n+1)) \pi_{\lt n-1}(O(n)) \overset{\simeq}{\longrightarrow} \pi_{\lt n-1}(O(n+1))
is an isomorphism and that
π n−1(O(n))⟶π n−1(O(n+1)) \pi_{n-1}(O(n)) \longrightarrow \pi_{n-1}(O(n+1))
is surjective. Hence now the statement follows by induction over N−nN-n.
It follows that the homotopy groups π k(O(n))\pi_k(O(n)) are independent of nn for n>k+1n \gt k + 1 (the “stable range”). So if O=lim⟶ nO(n)O = \underset{\longrightarrow}{\lim}_n O(n), then π k(O(n))=π k(O)\pi_k(O(n)) = \pi_k(O). By Bott periodicity we have
π 8k+0(O) =ℤ 2 π 8k+1(O) =ℤ 2 π 8k+2(O) =0 π 8k+3(O) =ℤ π 8k+4(O) =0 π 8k+5(O) =0 π 8k+6(O) =0 π 8k+7(O) =ℤ. \array{ \pi_{8k+0}(O) & = \mathbb{Z}_2 \\ \pi_{8k+1}(O) & = \mathbb{Z}_2 \\ \pi_{8k+2}(O) & = 0 \\ \pi_{8k+3}(O) & = \mathbb{Z} \\ \pi_{8k+4}(O) & = 0 \\ \pi_{8k+5}(O) & = 0 \\ \pi_{8k+6}(O) & = 0 \\ \pi_{8k+7}(O) & = \mathbb{Z}. }
In the unstable range for low degrees they instead start out as follows
GG | π 1\pi_1 | π 2\pi_2 | π 3\pi_3 | π 4\pi_4 | π 5\pi_5 | π 6\pi_6 | π 7\pi_7 | π 8\pi_8 | π 9\pi_9 | π 10\pi_10 | π 11\pi_11 | π 12\pi_12 | π 13\pi_13 | π 14\pi_14 | π 15\pi_15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SO(2)SO(2) | ℤ\mathbb{Z} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SO(3)SO(3) | ℤ 2\mathbb{Z}_2 | 0 | ℤ\mathbb{Z} | ℤ 2\mathbb{Z}_2 | ℤ 2\mathbb{Z}_2 | ℤ 12\mathbb{Z}_{12} | ℤ 2\mathbb{Z}_{2} | ℤ 2\mathbb{Z}_{2} | ℤ 3\mathbb{Z}_{3} | ℤ 15\mathbb{Z}_{15} | ℤ 2\mathbb{Z}_{2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2⊕ℤ 12\mathbb{Z}_2\oplus\mathbb{Z}_{12} | ℤ 2 ⊕2⊕ℤ 84\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z}_{84} | ℤ 2 ⊕2\mathbb{Z}_2^{\oplus 2} |
SO(4)SO(4) | “ | 0 | ℤ ⊕2\mathbb{Z}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 12 ⊕2\mathbb{Z}_{12}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 3 ⊕2\mathbb{Z}_{3}^{\oplus 2} | ℤ 15 ⊕2\mathbb{Z}_{15}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2 ⊕4\mathbb{Z}_{2}^{\oplus 4} | ℤ 2 ⊕2⊕ℤ 12 ⊕2\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z}_{12}^{\oplus 2} | ℤ 2 ⊕4⊕ℤ 84 ⊕2\mathbb{Z}_2^{\oplus 4}\oplus\mathbb{Z}_{84}^{\oplus 2} | ℤ 2 ⊕4\mathbb{Z}_2^{\oplus 4} |
SO(5)SO(5) | “ | “ | ℤ\mathbb{Z} | ℤ 2\mathbb{Z}_2 | ℤ 2\mathbb{Z}_2 | 0 | ℤ\mathbb{Z} | 0 | 0 | ℤ 120\mathbb{Z}_{120} | ℤ 2\mathbb{Z}_{2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2⊕ℤ 4\mathbb{Z}_2\oplus\mathbb{Z}_4 | ℤ 1680\mathbb{Z}_{1680} | ℤ 2\mathbb{Z}_2 |
SO(6)SO(6) | “ | “ | “ | 0 | ℤ\mathbb{Z} | 0 | ℤ\mathbb{Z} | ℤ 24\mathbb{Z}_{24} | ℤ 2\mathbb{Z}_2 | ℤ 2⊕ℤ 120\mathbb{Z}_2\oplus\mathbb{Z}_{120} | ℤ 4\mathbb{Z}_{4} | ℤ 60\mathbb{Z}_{60} | ℤ 4\mathbb{Z}_4 | ℤ 2⊕ℤ 1680\mathbb{Z}_2\oplus\mathbb{Z}_{1680} | ℤ 2⊕ℤ 72\mathbb{Z}_2\oplus\mathbb{Z}_{72} |
SO(7)SO(7) | “ | “ | “ | “ | 0 | 0 | ℤ\mathbb{Z} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 8\mathbb{Z}_{8} | ℤ 2⊕ℤ\mathbb{Z}_2\oplus\mathbb{Z} | 0 | ℤ 2\mathbb{Z}_2 | ℤ 2⊕ℤ 8⊕ℤ 2520\mathbb{Z}_2\oplus\mathbb{Z}_8\oplus\mathbb{Z}_{2520} | ℤ 2 ⊕4\mathbb{Z}_2^{\oplus 4} |
SO(8)SO(8) | “ | “ | “ | “ | “ | 0 | ℤ ⊕2\mathbb{Z}^{\oplus 2} | ℤ 2 ⊕3\mathbb{Z}_{2}^{\oplus 3} | ℤ 2 ⊕3\mathbb{Z}_{2}^{\oplus 3} | ℤ 8⊕ℤ 24\mathbb{Z}_{8} \oplus \mathbb{Z}_{24} | ℤ 2⊕ℤ\mathbb{Z}_2 \oplus \mathbb{Z} | 0 | ℤ ⊕2\mathbb{Z}^{\oplus 2} | ℤ 2⊕ℤ 8⊕ℤ 120⊕ℤ 2520\mathbb{Z}_2\oplus\mathbb{Z}_8\oplus\mathbb{Z}_{120}\oplus\mathbb{Z}_{2520} | ℤ 2 ⊕7\mathbb{Z}_2^{\oplus 7} |
SO(9)SO(9) | “ | “ | “ | “ | “ | “ | ℤ\mathbb{Z} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 8\mathbb{Z}_{8} | ℤ 2⊕ℤ\mathbb{Z}_2\oplus \mathbb{Z} | 0 | ℤ 2\mathbb{Z}_2 | ℤ 2⊕ℤ 8\mathbb{Z}_2\oplus\mathbb{Z}_8 | ℤ 2 ⊕3⊕ℤ\mathbb{Z}_2^{\oplus 3}\oplus\mathbb{Z} |
SO(10)SO(10) | “ | “ | “ | “ | “ | “ | “ | ℤ 2\mathbb{Z}_{2} | ℤ 2⊕ℤ\mathbb{Z}_2\oplus \mathbb{Z} | ℤ 4\mathbb{Z}_{4} | ℤ\mathbb{Z} | ℤ 12\mathbb{Z}_{12} | ℤ 2\mathbb{Z}_2 | ℤ 8\mathbb{Z}_8 | ℤ 2 ⊕2⊕ℤ\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z} |
SO(11)SO(11) | “ | “ | “ | “ | “ | “ | “ | “ | ℤ 2\mathbb{Z}_{2} | ℤ 2\mathbb{Z}_{2} | ℤ\mathbb{Z} | ℤ 2\mathbb{Z}_{2} | ℤ 2 ⊕2\mathbb{Z}_2^{\oplus 2} | ℤ 8\mathbb{Z}_8 | ℤ 2⊕ℤ\mathbb{Z}_2\oplus\mathbb{Z} |
SO(12)SO(12) | “ | “ | “ | “ | “ | “ | “ | “ | “ | 0 | ℤ ⊕2\mathbb{Z}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_{2}^{\oplus 2} | ℤ 2 ⊕2\mathbb{Z}_2^{\oplus 2} | ℤ 4⊕ℤ 24\mathbb{Z}_4\oplus\mathbb{Z}_{24} | ℤ 2⊕ℤ\mathbb{Z}_2\oplus\mathbb{Z} |
SO(13)SO(13) | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | ℤ\mathbb{Z} | ℤ 2\mathbb{Z}_2 | ℤ 2\mathbb{Z}_2 | ℤ 8\mathbb{Z}_8 | ℤ 2⊕ℤ\mathbb{Z}_2\oplus\mathbb{Z} |
SO(14)SO(14) | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | 0 | ℤ\mathbb{Z} | ℤ 4\mathbb{Z}_4 | ℤ\mathbb{Z} |
SO(15)SO(15) | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | 0 | ℤ 2\mathbb{Z}_2 | ℤ\mathbb{Z} |
SO(16)SO(16) | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | 0 | ℤ ⊕2\mathbb{Z}^{\oplus 2} |
SO(17)SO(17) | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | “ | ℤ\mathbb{Z} |
The SO(6)SO(6) row can be found using Mimura-Toda 63, using Spin(6)=SU(4)Spin(6) = SU(4), and that Spin(6)Spin(6) is a ℤ 2\mathbb{Z}_2-covering space of SO(6)SO(6). The SO(7)SO(7) row can be derived from the homotopy groups of Spin(7)Spin(7) as found in Mimura 67. Otherwise the table is given in columns π k\pi_k, k=10,…,15k=10,\ldots, 15, and in rows SO(n)SO(n), n=8,…,17n=8,\ldots,17, by the Encyclopedic Dictionary of Mathematics, Table 6.VII in Appendix A.
Note that the maps
π 3(SO(3))⟶π 3(SO(4))⟶π 3(SO(5)) ℤ⟶ℤ⊕ℤ⟶ℤ \array{ \pi_3(SO(3)) \longrightarrow \pi_3(SO(4)) \longrightarrow \pi_3(SO(5)) \\ \mathbb{Z}\longrightarrow \mathbb{Z}\oplus \mathbb{Z} \longrightarrow\mathbb{Z} }
are inclusion of the first summand followed by the map sending (1,0)↦2(1,0)\mapsto 2 and (0,1)↦1(0,1)\mapsto 1, so that stabilization from SO(3)SO(3) to SO(5)SO(5) induces multiplication by 22 on π 3\pi_3 (e.g. equations (2.1) and (2.2) in (Tamura 57) and surrounding discussion). The same is also true for π 7(SO(7))→π 7(SO(8))→π 7(SO(9))\pi_7(SO(7)) \to \pi_7(SO(8)) \to \pi_7(SO(9)).
Homology and cohomology
On the ordinary cohomology of the classifying spaces B O ( n ) B O(n) and B S O ( n ) B S O(n)
-
with ℤ 2 \mathbb{Z}_2 coefficients:
generated by the Stiefel-Whitney classes
-
with integer coefficients (integral cohomology):
generated by the integral Stiefel-Whitney classes and the Pontrjagin classes
(e.g. Brown 82, Feshbach 83, Pittie 91, Rudolph-Schmidt 17, Theorem 4.2.23)
Whitehead tower and higher orientation structures
The Whitehead tower of the orthogonal group plays an important role in applications related to quantum physics.
The first steps are
⋯→Fivebrane(n)→String(n)→Spin(n)→SO(n)→O(n). \cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,.
Fivebrane group to String group to Spin group to special orthogonal group to orthogonal group.
Given a manifold XX, lifts of the structure map X→ℬO(n)X \to \mathcal{B}O(n) of the O(n)O(n)-principal bundle to which the tangent bundle is associated through this tower define, respectively
on XX.
Coset spaces
Example
The n-spheres are coset spaces of orthogonal groups
S n≃O(n+1)/O(n). S^n \simeq O(n+1)/O(n) \,.
For fix a unit vector in ℝ n+1\mathbb{R}^{n+1}. Then its orbit under the defining O(n+1)O(n+1)-action on ℝ n+1\mathbb{R}^{n+1} is clearly the canonical embedding S n↪ℝ n+1S^n \hookrightarrow \mathbb{R}^{n+1}. But precisely the subgroup of O(n+1)O(n+1) that consists of rotations around the axis formed by that unit vector stabilizes it, and that subgroup is isomorphic to O(n)O(n), hence S n≃O(n+1)/O(n)S^n \simeq O(n+1)/O(n).
Example
For n≤kn \leq k, the coset
V n(ℝ k)≔O(k)/O(k−n) V_n(\mathbb{R}^k) \coloneqq O(k)/O(k-n)
is called the nnth real Stiefel manifold of ℝ k\mathbb{R}^k.
Proof
Consider the coset quotient projection
O(k−n)⟶O(k)⟶O(k)/O(k−n)=V n(ℝ k). O(k-n) \longrightarrow O(k) \longrightarrow O(k)/O(k-n) = V_n(\mathbb{R}^k) \,.
By prop. and by this corollary the projection O(k)→O(k)/O(k−n)O(k)\to O(k)/O(k-n) is a Serre fibration. Therefore there is induced the long exact sequence of homotopy groups of this fiber sequence, and by prop. it has the following form in degrees bounded by nn:
⋯→π •≤k−n−1(O(k−n))⟶epiπ •≤k−n−1(O(k))⟶0π •≤k−n−1(V n(ℝ k))⟶0π •−1<k−n−1(O(k))⟶≃π •−1<k−n−1(O(k−n))→⋯. \cdots \to \pi_{\bullet \leq k-n-1}(O(k-n)) \overset{epi}{\longrightarrow} \pi_{\bullet \leq k-n-1}(O(k)) \overset{0}{\longrightarrow} \pi_{\bullet \leq k-n-1}(V_n(\mathbb{R}^k)) \overset{0}{\longrightarrow} \pi_{\bullet-1 \lt k-n-1}(O(k)) \overset{\simeq}{\longrightarrow} \pi_{\bullet-1 \lt k-n-1}(O(k-n)) \to \cdots \,.
This implies the claim. (Exactness of the sequence says that every element in π •≤n−1(V n(ℝ k))\pi_{\bullet \leq n-1}(V_n(\mathbb{R}^k)) is in the kernel of zero, hence in the image of 0, hence is 0 itself.)
⋯→\cdots\to fivebrane group →\to string group →\to spin group →\to special orthogonal group →\to orthogonal group
group | symbol | universal cover | symbol | higher cover | symbol |
---|---|---|---|---|---|
orthogonal group | O(n)\mathrm{O}(n) | Pin group | Pin(n)Pin(n) | Tring group | Tring(n)Tring(n) |
special orthogonal group | SO(n)SO(n) | Spin group | Spin(n)Spin(n) | String group | String(n)String(n) |
Lorentz group | O(n,1)\mathrm{O}(n,1) | \, | Spin(n,1)Spin(n,1) | \, | \, |
anti de Sitter group | O(n,2)\mathrm{O}(n,2) | \, | Spin(n,2)Spin(n,2) | \, | \, |
conformal group | O(n+1,t+1)\mathrm{O}(n+1,t+1) | \, | |||
Narain group | O(n,n)O(n,n) | ||||
Poincaré group | ISO(n,1)ISO(n,1) | Poincaré spin group | ISO^(n,1)\widehat {ISO}(n,1) | \, | \, |
super Poincaré group | sISO(n,1)sISO(n,1) | \, | \, | \, | \, |
superconformal group |
Examples
References
Examples of sporadic (exceptional) isogenies from spin groups onto orthogonal groups are discussed in
- Paul Garrett, Sporadic isogenies to orthogonal groups (July 2013) [pdf, pdf ]
The homotopy groups of O(n)O(n) are listed for instance in
-
Alexander Abanov, Homotopy groups of Lie groups 2009 (pdf)
-
M. Mimura and H. Toda, Homotopy Groups of SU(3)SU(3), SU(4)SU(4) and Sp(2)Sp(2), J. Math. Kyoto Univ. Volume 3, Number 2 (1963), 217-250. (Euclid)
-
M. Mimura, The Homotopy groups of Lie groups of low rank, Math. Kyoto Univ. Volume 6, Number 2 (1967), 131-176. (Euclid)
The ordinary cohomology and ordinary homology of the manifolds SO(n)SO(n) is discussed in
-
John Milnor, Jim Stasheff, Characteristic classes, Princeton Univ. Press (1974) [ISBN:9780691081229, doi:10.1515/9781400881826, pdf]
-
Edgar H. Brown, The Cohomology of BSO nB SO_n and BO nBO_n with Integer Coefficients, Proceedings of the American Mathematical Society Vol. 85, No. 2 (Jun., 1982), pp. 283-288 (jstor:2044298)
-
Mark Feshbach, The Integral Cohomology Rings of the Classifying Spaces of O(n)\mathrm{O}(n) and SO(n)\mathrm{SO}(n), Indiana Univ. Math. J. 32 (1983), 511-516 (doi:10.1512/iumj.1983.32.32036)
-
Harsh V. Pittie, The integral homology and cohomology rings of SO(n) and Spin(n), Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105–153 (doi:10.1016/0022-4049(91)90108-E))
-
Gerd Rudolph, Matthias Schmidt, around Theorem 4.2.23 of Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields, Theoretical and Mathematical Physics series, Springer 2017 (doi:10.1007/978-94-024-0959-8)
See also
- Itiro Tamura, On Pontrjagin classes of homotopy types of manifolds, Journal of the mathematical society of Japan, Vol. 9 No. 2 , 1957 pdf
Last revised on November 11, 2024 at 12:03:56. See the history of this page for a list of all contributions to it.