Spin(5) in nLab
Context
Group Theory
- group, ∞-group
- group object, group object in an (∞,1)-category
- abelian group, spectrum
- super abelian group
- group action, ∞-action
- representation, ∞-representation
- progroup
- homogeneous space
Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
Spin geometry
spin geometry, string geometry, fivebrane geometry …
Ingredients
Spin geometry
String geometry
Fivebrane geometry
Ninebrane geometry
Contents
Idea
The spin group in dimension 5.
Properties
Exceptional isomorphism
This is an indirect consequence of triality, see e.g. Čadek-Vanžura 97. Alternatively, it can be shown as follows.
Let VV be a 4-dimensional complex vector space with an inner product and a compatible complex volume form. As explained here, this structure can be used to define a conjugate-linear Hodge star operator on Λ 2V\Lambda^2 V whose +1+1 and −1-1 eigenspaces, say Λ ± 2V\Lambda_{\pm}^2 V, are each 6-dimensional real inner product spaces. Thus, the group SU(V)\mathrm{SU}(V) acts as linear transformations of Λ ± 2V\Lambda_{\pm}^2 V that preserve the inner product, giving a homomorphism ρ:SU(V)→O(Λ ± 2V)\rho: \mathrm{SU}(V) \to \mathrm{O}(\Lambda_{\pm}^2 V). In fact ρ\rho maps SU(V)\mathrm{SU}(V) in a 2-1 and onto way to SO(Λ ± 2V)\mathrm{SO}(\Lambda_{\pm}^2 V). Taking V=ℂ 4V = \mathbb{C}^4 this shows SU(4)≅Spin(6)\mathrm{SU}(4) \cong \mathrm{Spin}(6).
Now suppose VV is additionally equipped with an complex symplectic structure, i.e. a nondegenerate skew-symmetric complex-bilinear form J∈Λ 2VJ \in \Lambda^2 V. The subgroup Sp(V)\mathrm{Sp}(V) of SU(V)\mathrm{SU}(V) preserving this extra structure is isomorphic to the compact symplectic group Sp(2)\mathrm{Sp}(2), which is also the quaternionic unitary group. This subgroup Sp(V)\mathrm{Sp}(V) acts on Λ + 2V\Lambda_+^2 V and Λ − 2V\Lambda_-^2 V preserving J∈Λ 2V=Λ + 2V⊕Λ − 2VJ \in \Lambda^2 V = \Lambda_+^2 V \oplus \Lambda_-^2 V. Since Sp(V)\mathrm{Sp}(V) is compact, every invariant subspace has an invariant complement, so one or both of the 6-dimensional subspaces Λ + 2V\Lambda_+^2 V and Λ − 2V\Lambda_-^2 V must have a 5-dimensional subspace invariant under the action of Sp(V)\mathrm{Sp}(V). This shows that the double cover ρ:SU(4)→SO(6)\rho: \mathrm{SU}(4) \to \mathrm{SO}(6) restricts to a 2-1 homomorphism σ:Sp(2)→SO(5)\sigma : \mathrm{Sp}(2) \to \mathrm{SO}(5). Since
dim(Sp(2))=10=dim(SO(5)) \dim(\mathrm{Sp}(2)) = 10 = \dim(\mathrm{SO}(5))
the differential dσd\sigma, being injective, must also be surjective. Thus σ:Sp(2)→SO(5)\sigma : \mathrm{Sp}(2) \to \mathrm{SO}(5) is actually a double cover. Since Sp(2)\mathrm{Sp}(2) is connected this implies Sp(2)≅Spin(5)\mathrm{Sp}(2) \cong \mathrm{Spin}(5).
Action on quaternionic Hopf fibration
Proposition
(Spin(5)-equivariance of quaternionic Hopf fibration)
Consider
-
the Spin(5)-action on the 4-sphere S 4S^4 which is induced by the defining action on ℝ 5\mathbb{R}^5 under the identification S 4≃S(ℝ 5)S^4 \simeq S(\mathbb{R}^5);
-
the Spin(5)-action on the 7-sphere S 7S^7 which is induced under the exceptional isomorphism Spin(5)≃Sp(2)=U(2,ℍ)Spin(5) \simeq Sp(2) = U(2,\mathbb{H}) (from Prop. ) by the canonical left action of U(2,ℍ)U(2,\mathbb{H}) on ℍ 2\mathbb{H}^2 via S 7≃S(ℍ 2)S^7 \simeq S(\mathbb{H}^2).
Then the quaternionic Hopf fibration S 7⟶h ℍS 4S^7 \overset{h_{\mathbb{H}}}{\longrightarrow} S^4 is equivariant with respect to these actions.
This is almost explicit in Porteous 95, p. 263
Cohomology
This is a special case of the general statement in Pittie 91, see e.g. Kalkkinen 06, Section 3).
Proposition
Let
S 4 ⟶ BSpin(4) ↓ π BSpin(5) \array{ S^4 &\longrightarrow& B Spin(4) \\ && \big\downarrow^{\mathrlap{\pi}} \\ && B Spin(5) }
be the spherical fibration of classifying spaces induced from the canonical inclusion of Spin(4) into Spin(5) and using that the 4-sphere is equivalently the coset space S 4≃Spin(5)/Spin(4)S^4 \simeq Spin(5)/Spin(4) (this Prop.).
Then the fiber integration of the odd cup powers χ 2k+1\chi^{2k+1} of the Euler class χ∈H 4(BSpin(4),ℤ)\chi \in H^4\big( B Spin(4), \mathbb{Z}\big) (see this Prop) are proportional to cup powers of the second Pontryagin class
π *(χ 2k+1)=2(p 2) k∈H 4(BSpin(5),ℤ), \pi_\ast \left( \chi^{2k+1} \right) \;=\; 2 \big( p_2 \big)^k \;\;\in\;\; H^4\big( B Spin(5), \mathbb{Z} \big) \,,
for instance
π *(χ) =2 π *(χ 3) =2p 2 π *(χ 5) =2(p 2) 2∈H 4(BSpin(5),ℤ); \begin{aligned} \pi_\ast \big( \chi \big) & = 2 \\ \pi_\ast \left( \chi^3 \right) & = 2 p_2 \\ \pi_\ast \left( \chi^5 \right) & = 2 (p_2)^2 \end{aligned} \;\;\in\;\; H^4\big( B Spin(5), \mathbb{Z} \big) \,;
while the fiber integration of the even cup powers χ 2k\chi^{2k} vanishes
π *(χ 2k)=0∈H 4(BSpin(5),ℤ). \pi_\ast \left( \chi^{2k} \right) \;=\; 0 \;\;\in\;\; H^4\big( B Spin(5), \mathbb{Z} \big) \,.
Coset spaces
GG-Structure and exceptional geometry
linebreak
References
-
Ian Porteous, Clifford Algebras and the Classical Groups, Cambridge Studies in Advanced Mathematics, Cambridge University Press (1995)
-
Martin Čadek, Jiří Vanžura, On Sp(2)Sp(2) and Sp(2)⋅Sp(1)Sp(2) \cdot Sp(1)-structures in 8-dimensional vector bundles, Publicacions Matemàtiques Vol. 41, No. 2 (1997), pp. 383-401 (jstor:43737249)
-
Raoul Bott, Alberto Cattaneo, Integral Invariants of 3-Manifolds, J. Diff. Geom. 48 (1998) 91-133 [arXiv:dg-ga/9710001, doi:10.4310/jdg/1214460608]
-
Harsh Pittie, The integral homology and cohomology rings of SO(n) and Spin(n), Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105–153 (doi:10.1016/0022-4049(91)90108-E)
-
Jussi Kalkkinen, Global Spinors and Orientable Five-Branes, JHEP 0609: 028, 2006 (arXiv:hep-th/0604081)
Last revised on June 23, 2023 at 06:02:33. See the history of this page for a list of all contributions to it.