tmf in nLab
Context
Elliptic cohomology
Cohomology
Special and general types
-
group cohomology, nonabelian group cohomology, Lie group cohomology
-
-
cohomology with constant coefficients / with a local system of coefficients
Special notions
Variants
-
differential cohomology
Operations
Theorems
Contents
- Idea
- Definition
- Constructions
- Decomposition via Arithmetic fracture squares
- Stacks from spectra
- The context – derived geometry over formal duals of E ∞E_\infty-rings
- Coverings by the Thom spectrum
- Decategorification: the ordinary moduli stack of elliptic curves
- Explicit computation of homotopy groups by a spectral sequence
- With Level structure
- Properties
- Homotopy groups
- Boardman homomorphism
- Inclusion of circle 2-bundles
- Maps to K-theory and to Tate K-theory
- Witten genus and string orientation
- Chromatic filtration
- Anderson self-duality
- Modular equivariant versions
- Related concepts
- References
Idea
The generalized (Eilenberg-Steenrod) cohomology theory/spectrum called tmftmf – for topological modular forms – is in a precise sense the union of all elliptic cohomology theories/elliptic spectra (Hopkins 94).
More precisely, tmftmf is the homotopy limit in E-∞ rings of the elliptic spectra of all elliptic cohomology theories, parameterized over the moduli stack of elliptic curves ℳ ell\mathcal{M}_{ell}. That such a parameterization exists, coherently, in the first place is due to the Goerss-Hopkins-Miller theorem. In the language of derived algebraic geometry this refines the commutative ring-valued structure sheaf 𝒪\mathcal{O} of the moduli stack of elliptic curves to an E-∞ ring-valued sheaf 𝒪 top\mathcal{O}^{top}, making (ℳ ell,𝒪 top)(\mathcal{M}_{ell}, \mathcal{O}^{top}) a spectral Deligne-Mumford stack, and tmftmf is the E-∞ ring of global sections of that structure sheaf (Lurie).
The construction of tmftmf has motivation from physics (string theory) and from chromatic homotopy theory:
-
from string theory. Associating to a space, roughly, the partition function of the spinning string/superstring sigma-model with that space as target spacetime defines a genus known as the Witten genus, with coefficients in ordinary modular forms. Now, the interesting genera typically appear as the values on homotopy groups (the decategorification) of orientations of multiplicative cohomology theories; for instance the A-hat genus, which is the partition function of the spinning particle/superparticle is a shadow of the Atiyah-Bott-Shapiro Spin structure-orientation of the KO spectrum. Therefore an obvious question is which spectrum lifts this classical statement from point particles to strings. The spectrum tmftmf solves this: there is a String structure orientation of tmf such that on homotopy groups it reduces to the Witten genus of the superstring (Ando-Hopkins-Rezk 10).
Mathematically this means for instance that tmftmf-cohomology classes help to detect elements in the string cobordism ring. Physically it means that the small aspect of string theory which is captured by the Witten genus is realized more deeply as part of fundamental mathematics (chromatic stable homotopy theory, see the next point) and specifically of elliptic cohomology. Since the full mathematical structure of string theory is still under investigation, this might point the way:
A properly developed theory of elliptic cohomology is likely to shed some light on what string theory really means. (Witten 87, very last sentence)
-
from chromatic homotopy theory. The symmetric monoidal stable (∞,1)-category of spectra (finite spectra) has its prime spectrum parameterized by prime numbers pp and Morava K-theory spectra K(n)K(n) at these primes, for natural numbers nn. The level nn here is called the chromatic level. In some sense the part of this prime spectrum at chromatic level 0 is ordinary cohomology and that at level 1 is topological K-theory. Therefore an obvious question is what the part at level 2 would be, and in some sense the answer is tmftmf. (This point of view has been particularly amplified in the review (Mazel-Gee 13) of the writeup of the construction in (Behrens 13), which in turn is based on unpublished results based on (Hopkins 02)). For purposes of stable homotopy theory this means for instance that tmftmf provides new tools for computing more homotopy groups of spheres via an Adams-Novikov spectral sequence.
Definition
Write
-
ℳ cub\mathcal{M}_{cub} for the moduli stack of curves for cubic curves;
-
ℳ ell\mathcal{M}_{ell} for the moduli stack of elliptic curves;
-
ℳ ell¯\mathcal{M}_{\overline{ell}} for its Deligne-Mumford compactification obtained by adding the nodal cubic curve.
(Here ℳ cub\mathcal{M}_{cub} is obatined by furthermor adding also the cuspidal cubic curve, hence we have canonical maps ℳ ell→ℳ ell¯→ℳ cusp→ℳ FG\mathcal{M}_{ell}\to \mathcal{M}_{\overline{ell}}\to \mathcal{M}_{cusp} \to \mathcal{M}_{FG}).
The Goerss-Hopkins-Miller theorem equips these three moduli stacks with E-∞ ring-valued structure sheaves 𝒪 top\mathcal{O}^{top} (and by Lurie (Survey) that makes them into spectral Deligne-Mumford stacks which are moduli spaces for derived elliptic curves etc.)
The tmftmf-spectrum is defined to be the E ∞E_\infty-ring of global sections of 𝒪 top\mathcal{O}^{top} (in the sense of derived algebraic geometry, hence the homotopy limit of 𝒪 top\mathcal{O}^{top} over the etale site of ℳ\mathcal{M}). More precisely one sets
-
TMF≔Γ(ℳ ell,𝒪 top)TMF \coloneqq \Gamma(\mathcal{M}_{ell}, \mathcal{O}^{top});
-
Tmf≔Γ(ℳ ell¯,𝒪 top)Tmf \coloneqq \Gamma(\mathcal{M}_{\overline{ell}}, \mathcal{O}^{top});
-
tmf≔tmf \coloneqq the connective cover of TmfTmf (also ≃Γ(ℳ cub¯,𝒪 top)\simeq \Gamma(\mathcal{M}_{\overline{cub}}, \mathcal{O}^{top}) (Hill-Lawson 13, p. 2 (?)).
Constructions
Decomposition via Arithmetic fracture squares
We survey here some aspects of the explicit construction in (Behrens 13), a review is also in (Mazel-Gee 13),
The basic strategy here is to use arithmetic squares in order to decompose the problem into smaller more manageable pieces.
Write ℳ ell¯\overline{\mathcal{M}_{ell}} for the compactified moduli stack of elliptic curves. In there one finds the pieces
ℳ ell¯ ←ι p (ℳ ell¯) p ι ℚ↑ (ℳ ell¯) ℚ \array{ \overline{\mathcal{M}_{ell}} &\stackrel{\iota_{p}}{\leftarrow}& (\overline{\mathcal{M}_{ell}})_p \\ {}^{\mathllap{\iota_{\mathbb{Q}}}}\uparrow \\ (\overline{\mathcal{M}_{ell}})_{\mathbb{Q}} }
given by rationalization
(ℳ ell¯) ℚ=ℳ ell¯×Spec(ℤ)Spec(ℚ) (\overline{\mathcal{M}_{ell}})_{\mathbb{Q}} = \overline{\mathcal{M}_{ell}} \underset{Spec(\mathbb{Z})}{\times} Spec(\mathbb{Q})
(hence this is the moduli of elliptic curves over the rational numbers) and by p-completion
(ℳ ell¯) p=(ℳ ell¯)×Spec(ℤ)Spf(ℤ p) (\overline{\mathcal{M}_{ell}})_p = (\overline{\mathcal{M}_{ell}}) \underset{Spec(\mathbb{Z})}{\times} Spf(\mathbb{Z}_p)
for any prime number pp, where ℤ p\mathbb{Z}_p denotes the p-adic integers and Spf(−)Spf(-) the formal spectrum. (Hence this is the moduli of elliptic curves over p-adic integers).
This induces the arithmetic square decomposition which realizes 𝒪 top\mathcal{O}^{top} as the homotopy fiber product in
𝒪 top → ∏ p(ι p) *𝒪 p top ↓ ↓ L ℚ (ι ℚ) *𝒪 ℚ top →α arith (∏ p(ι p) *𝒪 p top) ℚ \array{ \mathcal{O}^{top} &\to& \prod_p (\iota_p)_\ast \mathcal{O}^{top}_p \\ \downarrow && \downarrow^{\mathrlap{L_{\mathbb{Q}}}} \\ (\iota_{\mathbb{Q}})_\ast \mathcal{O}^{top}_{\mathbb{Q}} &\stackrel{\alpha_{arith}}{\to}& \left( \prod_p (\iota_p)_\ast \mathcal{O}^{top}_p \right)_{\mathbb{Q}} }
Here 𝒪 ℚ top\mathcal{O}^{top}_{\mathbb{Q}} can be obtained directly, and to obtain 𝒪 p top\mathcal{O}^{top}_p one uses in turn another fracture square, now decomposing via K(n)-localization into K(1)K(1)-local and K(2)K(2)-local pieces.
(…)
Stacks from spectra
There is a way to “construct” the tmf-spectrum as the E-∞ ring of global sections of a structured (∞,1)-topos whose underlying space is essentially the moduli stack of elliptic curves. We sketch some main ideas of this construction.
The context – derived geometry over formal duals of E ∞E_\infty-rings
The discussion happens in the context of derived geometry in the (∞,1)-topos H\mathbf{H} over a small version of the (∞,1)-site of formal duals of E-∞ rings (ring spectra). This is equipped with some subcanonical coverage. For R∈E ∞RingR \in E_\infty Ring we write SpecRSpec R for its image under the (∞,1)-Yoneda embedding (E ∞Ring) op↪H(E_\infty Ring)^{op} \hookrightarrow \mathbf{H}.
Coverings by the Thom spectrum
The crucial input for the entire construction is the following statement.
The idea is that the formal dual of the complex cobordism Thom spectrum MUM U is in a suitable sense a covering
SpecMU→Spec𝕊 Spec M U \to Spec \mathbb{S}
of the terminal object in H\mathbf{H}. (See at Adams spectral sequence – As derived descent)
This means that SpecMUSpec M U plays the role of a cover of the point. This allows to do some computations with ring spectra locally on the cover SpecMUSpec M U . Since MU *M U^* is the Lazard ring, this explains why formal group laws show up all over the place.
To see this, first notice that the problem of realizing R=tmfR = tmf or any other ring spectrum as the ring of global sections on something has a tautological solution : almost by definition (see generalized scheme) there is an E ∞E_\infty-ring valued structure sheaf 𝒪Spec(R)\mathcal{O}Spec(R) on SpecRSpec R and its global sections is RR. So we have in particular
tmf≃𝒪(Spec(tmf)). tmf \simeq \mathcal{O}(Spec(tmf)) \,.
In order to get a less tautological and more insightful characterization, the strategy is now to pass on the right to the SpecMUSpec M U-cover by forming the (∞,1)-pullback
Spec(tmf)×Spec(MU) → Spec(tmf) ↓ ↓ Spec(MU) → *≃Spec(𝕊). \array{ Spec(tmf) \times Spec(M U) &\to& Spec(tmf) \\ \downarrow && \downarrow \\ Spec(M U) &\to& * \simeq Spec(\mathbb{S}) } \,.
The resulting Cech nerve is a groupoid object in an (∞,1)-category given by
⋯→→→Spec(tmf)×Spec(MU)×Spec(MU)→→Spec(tmf)×Spec(MU) \cdots \stackrel{\to}{\stackrel{\to}{\to}} Spec(tmf) \times Spec(MU) \times Spec(MU) \stackrel{\to}{\to} Spec(tmf) \times Spec(MU)
which by formal duality is
⋯→→→Spec(tmf∧MU∧MU)→→Spec(tmf∧MU) \cdots \stackrel{\to}{\stackrel{\to}{\to}} Spec (tmf \wedge MU \wedge MU) \stackrel{\to}{\to} Spec ( tmf \wedge MU)
where the smash product ∧\wedge of ring spectra over the sphere spectrum 𝕊\mathbb{S} is the tensor product operation on function algebras formally dual to forming products of spaces.
As a groupoid object this is still equivalent to just Spec(tmf)Spec(tmf).
Decategorification: the ordinary moduli stack of elliptic curves
To simplify this we take a drastic step and apply a lot of decategorification: by applying the homotopy group (∞,1)-functor to all the E ∞E_\infty-rings involved these are sent to graded ordinary rings π *(tmf)\pi_*(tmf), π *(MU)\pi_*(M U) etc. The result is an ordinary simplicial scheme
⋯→→→Spec(π *(tmf∧MU∧MU))→→Spec(π *(tmf∧MU)), \cdots \stackrel{\to}{\stackrel{\to}{\to}} Spec (\pi_*(tmf \wedge M U \wedge M U)) \stackrel{\to}{\to} Spec ( \pi_*(tmf \wedge M U)) \,,
which remembers the fact that its structure rings are graded by being equipped with an action of the multiplicative group 𝔾=𝔸 ×\mathbb{G} = \mathbb{A}^\times (see line object).
This general Ansatz is discussed in (Hopkins).
This simplicial scheme, which is degreewise the formal dual of a graded ring of generalized homology-groups one can show is in fact a groupoid, hence a stack: effectively the moduli stack of elliptic curves. ℳ ell\mathcal{M}_{ell}. See (Henriques).
In fact if in this construction one replaced SpectmfSpec tmf by the point, one obtains the simplicial scheme
⋯→→→Spec(π *(MU∧MU))→→Spec(π *(MU)) \cdots \stackrel{\to}{\stackrel{\to}{\to}} Spec (\pi_*(M U \wedge M U)) \stackrel{\to}{\to} Spec ( \pi_*(M U))
which one finds is the moduli stack of formal group laws ℳ fg\mathcal{M}_{fg}.
Explicit computation of homotopy groups by a spectral sequence
Now, a priori these underived stacks remember little about the original derived schemes SpectmfSpec tmf etc. They may not even carry any E ∞E_\infty-ring valued structure sheaf anymore (though some of them do).
If they do carry an E ∞E_\infty-ring valued structure sheaf 𝒪\mathcal{O}, one can compute the homotopy groups of its global sections by a spectral sequence
H p(ℳ ell,π q(𝒪))⇒π p+q𝒪(ℳ ell). H^p(\mathcal{M}_{ell}, \pi_q(\mathcal{O})) \Rightarrow \pi_{p+q} \mathcal{O}(\mathcal{M}_{ell}) \,.
But it turns out that even if the derived structure sheaf does not exist, this spectral sequence may still converge and may still compute the homotopy groups of the ring spectrum that one started with. This gives one way to compute the homotopy groups of tmftmf.
For the case of tmftmf one finds that the homotopy sheaves π q(𝒪(ℳ ell))\pi_q(\mathcal{O}(\mathcal{M}_{ell})) are simple: they vanish in odd degree and are tensor powers ω ⊗k\omega^{\otimes k} of the canonical line bundle ω\omega in even degree 2k2 k, where the fiber of ω\omega over an elliptic curve is the tangent space of that curve at its identity element. A section of ω ⊗k\omega^{\otimes k} is a modular form of weight kk. So the whole problem of computing the homotopy groups of tmftmf boils down to computing the abelian sheaf cohomology of the moduli stack of elliptic curves with coefficients in these abelian groups of modular forms — and then examining the resulting spectral sequence.
This can be done quite explicitly in terms of a long but fairly elementary computation in ordinary algebra. A detailed discussion of this computation is in (Henriques)
With Level structure
The moduli stack of elliptic curves has covers by that of elliptic curves with level structure Γ\Gamma. Under some conditions these covers inherit derived structure sheaves 𝒪 top\mathcal{O}^{top} and hence induce spectra of “topological forms with level structure”, tmf(Γ)tmf(\Gamma) (Mahowald-Rezk 09). For more on this see at modular equivariant elliptic cohomology.
For instance tmf 0(2)tmf_0(2) (for the congruence subgroup which preserves an NS-R spin structure on elliptic curves over the complex numbers) is the elliptic spectrum EllEll of (Landweber-Ravenel-Stong 93), see at tmf0(2).
Discussion of level structure also governs the relation of tmf to K-theory, see at Maps to K-theory and Tate K-theory.
Properties
Homotopy groups
The first few homotopy groups of tmftmf are (Hopkins 02, section 4.3)
kk | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
π k(tmf)\pi_k(tmf) | ℤ\mathbb{Z} | ℤ/2ℤ\mathbb{Z}/2\mathbb{Z} | ℤ/2ℤ\mathbb{Z}/2\mathbb{Z} | ℤ/24ℤ\mathbb{Z}/24\mathbb{Z} | 0 | 0 | ℤ/2ℤ\mathbb{Z}/2\mathbb{Z} | 0 | ℤ⊕ℤ/2ℤ\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z} | (ℤ/2ℤ) 2(\mathbb{Z}/2\mathbb{Z})^2 | ℤ/6ℤ\mathbb{Z}/6\mathbb{Z} | 0 | ℤ\mathbb{Z} | ℤ/3ℤ\mathbb{Z}/3\mathbb{Z} | ℤ/2ℤ\mathbb{Z}/2\mathbb{Z} |
Boardman homomorphism
Write 𝕊\mathbb{S} for the sphere spectrum and tmf for the connective spectrum of topological modular forms. Since tmf is an E-∞ring spectrum, there is an essentially unique homomorphism of E-∞ring spectra
𝕊⟶e tmftmf. \mathbb{S} \overset{e_{tmf}}{\longrightarrow} tmf \,.
Regarded as a morphism of generalized homology-theories, this is also called the Hurewicz homomorphism, or rather the Boardman homomorphism for tmftmf
(Hopkins 02, Prop. 4.6, DFHH 14, Ch. 13)
Inclusion of circle 2-bundles
Write B 2U(1)≃K(ℤ,3)B^2 U(1) \simeq K(\mathbb{Z},3) for the abelian ∞-group whose underlying homotopy type is the classifying space for circle 2-bundle. Write 𝕊[B 2U(1)]\mathbb{S}[B^2 U(1)] for its ∞-group ∞-ring.
Proposition
There is a canonical homomorphism of E-∞ rings
𝕊[B 2U(1)]→tmf. \mathbb{S}[B^2 U(1)] \to tmf \,.
See (Ando-Blumberg-Gepner 10, section 8).
Maps to K-theory and to Tate K-theory
The inclusion of the compactification point (representing the nodal curve but being itself the cusp of ℳ ell¯\mathcal{M}_{\overline{ell}}) into the compactified moduli stack of elliptic curves ℳ ell¯\mathcal{M}_{\overline{ell}} is equivalently the inclusion of the moduli stack of 1-dimensional tori ℳ 1dtori=ℳ 𝔾 m\mathcal{M}_{1dtori} = \mathcal{M}_{\mathbb{G}_m} (Lawson-Naumann 12, Appendix A)
ℳ 𝔾 m≃Bℤ 2⟶ℳ ell¯→ℳ FG \mathcal{M}_{\mathbb{G}_m} \simeq \mathbf{B}\mathbb{Z}_2 \longrightarrow \mathcal{M}_{\overline{ell}} \to \mathcal{M}_{FG}
and pullback of global sections of Goerss-Hopkins-Miller-Lurie theorem-wise E ∞E_\infty-ring valued structure sheaves yields maps
KO⟵⟵𝕊 KO \longleftarrow \longleftarrow \mathbb{S}
exhibiting KO =Γ(ℳ 𝔾 m,𝒪 top)= \Gamma(\mathcal{M}_{\mathbb{G}_m}, \mathcal{O}^{top}).
At least after 2-localization the canonical double cover of the compactification of ℳ 𝔾 m≃Bℤ 2\mathcal{M}_{\mathbb{G}_m} \simeq \mathbf{B}\mathbb{Z}_2 similarly yields under Γ(−,𝒪 top)\Gamma(-,\mathcal{O}^{top}) the inclusion of koko as the ℤ 2\mathbb{Z}_2-homotopy fixed points of kuku (see at KR-theory for more on this)
ku (2) ↑ ko (2) \array{ ku_{(2)} \\ \uparrow \\ ko_{(2)} }
and combined with the above this comes with maps from tmftmf by restriction along the inclusion of the nodal curve cusp as
ku (2) ⟵ tmf 1(3) (2) ↑ ↑ ko (2) ⟵ tmf (2), \array{ ku_{(2)} & \longleftarrow & tmf_1(3)_{(2)} \\ \uparrow && \uparrow \\ ko_{(2)} & \longleftarrow & tmf_{(2)} } \,,
(Lawson-Naumann 12, theorem 1.2), where tmf 1(3)tmf_1(3) denotes topological modular forms with level-3 structure (Mahowald-Rezk 09).
Moreover, including not just the nodal curve cusp but its formal neighbourhood, which is the Tate curve, there is analogously a canonical map of E ∞E_\infty-rings
tmf⟶KO[[q]] tmf \longrightarrow KO[ [ q ] ]
to Tate K-theory (this is originally asserted in Ando-Hopkins-Strickland 01, details are in Hill-Lawson 13, appendix A).
Witten genus and string orientation
The tmftmf-spectrum is the codomain of the Witten genus, or rather of its refinements to the string orientation of tmf with value in topological modular forms
σ:MString→tmf. \sigma : M String \to tmf \,.
The original Witten genus is the value of the composite of this with the map to Tate K-theory on homotopy groups. (Ando-Hopkins-Rezk 10)
Chromatic filtration
Anderson self-duality
The spectrum TmfTmf is self-dual under Anderson duality, more precisley Tmf[1/2]Tmf[1/2] is Anderson-dual to Σ 21Tmf[1/2]\Sigma^{21} Tmf[1/2] (Stojanoska 11, theorem 13.1)
Modular equivariant versions
See at modular equivariant elliptic cohomology and at Tmf(n).
References
The idea of a generalized cohomology theory with coefficients the ring of topological modular forms providing a home for the refined Witten genus of
- Edward Witten, Elliptic Genera And Quantum Field Theory, Commun. Math. Phys. 109 525 (1987) (euclid.cmp/1104117076, pdf)
and produced as a homotopy limit of elliptic cohomology theories over the moduli stack of elliptic curves was originally announced, as joint work with Mark Mahowald and Haynes Miller, in
- Michael Hopkins, section 9 of Topological modular forms, the Witten Genus, and the theorem of the cube, Proceedings of the International Congress of Mathematics, Zürich 1994 (pdf, doi:10.1007/978-3-0348-9078-6_49)
(There the spectrum was still called “eo 2eo_2” instead of “tmftmf”.) The details of the definition then appeared in
- Michael Hopkins, section 4 of Algebraic topology and modular forms, Proceedings of the ICM, Beijing 2002, vol. 1, 283–309 (arXiv:math/0212397)
A central tool that goes into the construction is the Goerss-Hopkins-Miller theorem, see there for references on that.
Textbook account:
- Christopher Douglas, John Francis, André Henriques, Michael Hill (eds.), Topological Modular Forms, Mathematical Surveys and Monographs Volume 201, AMS 2014 (ISBN:978-1-4704-1884-7)
Expositions include
-
Aaron Mazel-Gee, You could’ve invented tmftmf, April 2013 (pdf slides, notes pdf)
See also
- Chris Douglas, André Henriques, Topological modular forms and conformal nets, in Hisham Sati, Urs Schreiber (eds.), Mathematical Foundations of Quantum Field and Perturbative String Theory, Proceedings of Symposia in Pure Mathematics, AMS (2011) (arXiv:1103.4187, doi:10.1090/pspum/083)
An actual detailed account of the construction of tmftmf (via decomposition by arithmetic squares) is spelled out in
- Mark Behrens, Notes on the construction of tmftmf, 2013 (pdf)
A complete account of the computation of the homotopy groups of tmftmf (following previous unpublished computations) is in
- Tilman Bauer, Computation of the homotopy groups of the spectrum tmftmf (pdf)
A survey of how this works is in
-
Akhil Mathew, The homotopy groups of TMFTMF (pdf)
(This presents as an instructive much simpler but analogous case the construction of KO in analogy to the construction of tmftmf, more details on this are in Mathew 13, section 3.)
and course notes that go through the construction of tmf and the computation of its homotopy groups are here:
-
Talbot workshop on TMF (web)
-
Mike Hopkins (talk notes by Michael Hill), Stacks and complex oriented cohomology theories (pdf)
-
André Henriques, The homotopy groups of tmf (pdf)
-
André Henriques, The moduli stack of elliptic curves (pdf)
-
The non-connective version of this is discussed in
- Johan Konter, The homotopy groups of the spectrum Tmf (arXiv:1212.3656)
Supplementary material graphically displaying parts of these intricate computations is in
-
the graded ring tmf *(pt)tmf^\ast(pt) (pdf);
the spectral sequence used to compute it (pdf);
whose E 2E_2-page is Ext A(2)(𝔽 2,𝔽 2)Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2) where A(2)A(2) is displayed here: pdf;
the spectral sequence that computes Tmf *(pt)Tmf^\ast(pt) (pdf)
The ℤ 2\mathbb{Z}_2-homology of tmftmf is discussed in
- Akhil Mathew, The homology of tmftmf (arXiv:1305.6100)
The refinement of the Witten genus to a morphism of E-∞ rings to tmftmf, hence the string orientation of tmf is due to
-
Michael Hopkins, Topological modular forms, the Witten Genus, and the theorem of the cube, Proceedings of the International Congress of Mathematics, Zürich 1994 (pdf)
-
Matthew Ando, Michael Hopkins, Neil Strickland, Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math. 146 (2001) 595–687 MR1869850
-
Michael Hopkins, Algebraic topology and modular forms, Proceedings of the ICM, Beijing 2002, vol. 1, 283–309 (arXiv:math/0212397)
-
Matthew Ando, Michael Hopkins, Charles Rezk, Multiplicative orientations of KO-theory and the spectrum of topological modular forms, 2010 (pdf)
see also remark 1.4 of
- Paul Goerss, Topological modular forms (after Hopkins, Miller and Lurie) (pdf).
and for more on the sigma-orientation see
- Matthew Ando, The sigma orientation for analytic circle-equivariant elliptic cohomology, Geom. Topol. 7 (2003) 91-153 (arXiv:math/0201092)
Discussion of twisted cohomology with coefficients in tmftmf is in
- Matthew Ando, Andrew Blumberg, David Gepner, section 8 of Twists of K-theory and TMF, in Robert S. Doran, Greg Friedman, Jonathan Rosenberg, Superstrings, Geometry, Topology, and C *C^*-algebras, Proceedings of Symposia in Pure Mathematics vol 81, American Mathematical Society (arXiv:1002.3004)
Topological modular forms with level N-structure – tmf(N)tmf(N) – is discussed in
-
Mark Mahowald, Charles Rezk, Topological modular forms of level 3, Pure Appl. Math. Quar. 5 (2009) 853-872 (pdf)
-
Donald Davis, Mark Mahowald, Connective versions of TMF(3)TMF(3) (arXiv:1005.3752)
-
Vesna Stojanoska, Duality for Topological Modular Forms (arXiv:1105.3968)
-
Tyler Lawson, Niko Naumann, Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2, Int. Math. Res. Not. (2013) (arXiv:1203.1696)
-
Michael Hill, Tyler Lawson, Topological modular forms with level structure, Inventiones mathematicae volume 203, pages 359–416 (2016) (arXiv:1312.7394, doi:10.1007/s00222-015-0589-5)
(with level structure)
The self-Anderson duality of tmftmf is discussed in (Stojanoska 11).
On equivariant topological modular forms (on equivariant elliptic cohomology):
- David Gepner, Lennart Meier, On equivariant topological modular forms, (arXiv:2004.10254)
On the Boardman homomorphism (generalized Hurewicz homomorphism) to tmf:
On the Boardman homomorphism (generalized Hurewicz homomorphism) to tmf:
- Mark Behrens, Mark Mahowald, J. D. Quigley: The 2-primary Hurewicz image of tmftmf, Geometry & Topology 27 (2023) 2763–2831 [arXiv:2011.08956, doi:10.2140/gt.2023.27.2763]
More on the role of lifting the Witten genus to tmf from the point of view of heterotic string theory:
-
Yuji Tachikawa, Topological modular forms and the absence of a heterotic global anomaly, Progress of Theoretical and Experimental Physics, 2022 4 (2022) 04A107 [[arXiv:2103.12211, doi:10.1093/ptep/ptab060]]
-
Yuji Tachikawa, Mayuko Yamashita, Topological modular forms and the absence of all heterotic global anomalies, Comm. Math. Phys. 402 (2023) 1585-1620 [arXiv:2108.13542, doi:10.1007/s00220-023-04761-2]
-
Yuji Tachikawa, Mayuko Yamashita, Anderson self-duality of topological modular forms, its differential-geometric manifestations, and vertex operator algebras [arXiv:2305.06196]
On Adams operations for tmf:
- Jack Morgan Davies, Constructing and calculating Adams operations on dualisable topological modular forms [arXiv:2104.13407]
Last revised on December 21, 2024 at 15:51:32. See the history of this page for a list of all contributions to it.