ncatlab.org

complex oriented cohomology theory in nLab

Contents

Context

Cohomology

cohomology

Special and general types

Special notions

Variants

Operations

Theorems

Complex geometry

Contents

Idea

A complex oriented cohomology theory is a Whitehead-generalized cohomology theory which is oriented on all complex vector bundles. Examples include ordinary cohomology, complex topological K-theory, elliptic cohomology and cobordism cohomology.

The collection of all complex oriented cohomology theories turns out to be parameterized over the moduli stack of formal group laws. The stratification of this stack by the height of formal group leads to the stratification of complex oriented cohomology theory by “chromatic level”, a perspective also known as chromatic homotopy theory.

For more detailed introduction see at Introduction to Cobordism and Complex Oriented Cohomology.

Definition

In terms of generalized first Chern classes

Write ℂP ∞≃BU(1)≃K(ℤ,2)\mathbb{C}P^\infty \simeq B U(1) \simeq K(\mathbb{Z},2) for the infinite complex projective space, equivalently the classifying space for circle group-principal bundles (an Eilenberg-MacLane space); write S 2S^2 for the 2-sphere and write

i:S 2⟶BU(1) i \;\colon\; S^2 \longrightarrow B U(1)

for a representative of 1∈ℤ≃π 2(BU(1))1 \in \mathbb{Z} \simeq \pi_2(B U(1)), classifying the universal complex line bundle. Regard both S 2S^2 and B U ( 1 ) B U(1) as pointed homotopy types and take ii to be a pointed morphism.

Let E •E^\bullet be a multiplicative cohomology theory, i.e. a functor X↦π •[X,E]X \mapsto \pi_\bullet[X,E] for EE a ring spectrum. Write E˜ •\tilde E^\bullet for the corresponding reduced cohomology on pointed topological spaces, such that for any pointed space XX there is a canonical direct sum decomposition (this prop.)

E •(X)≃E˜ •(X)⊕E •(*). E^\bullet(X) \simeq \tilde E^\bullet(X) \oplus E^\bullet(\ast) \,.

By the suspension isomorphism there is an identification

E˜ 2(S 2)≃E˜ 0(S 0)≃E 0(*)≃π 0(E) \tilde E^2(S^2) \simeq \tilde E^0(S^0) \simeq E^0(\ast) \simeq \pi_0(E)

with the commutative ring underlying EE. Write 1∈π 0(E)1 \in \pi_0(E) for the multiplicative identity element in this ring.

Definition

(complex oriented cohomology theory)

A multiplicative cohomology theory EE is complex orientable if the following equivalent conditions hold:

  1. The morphism

    i *:E 2(BU(1))⟶E 2(S 2) i^\ast \;\colon\; E^2(B U(1)) \longrightarrow E^2(S^2)

    is surjective.

  2. The morphism on reduced cohomology

    i˜ *:E˜ 2(BU(1))⟶E˜ 2(S 2)≃π 0(E) \tilde i^\ast \;\colon\; \tilde E^2(B U(1)) \longrightarrow \tilde E^2(S^2) \simeq \pi_0(E)

    is surjective.

  3. The ring unit 1∈π 0(E)1 \in \pi_0(E) is in the image of the morphism i˜ *\tilde i^\ast.

A complex orientation on a multiplicative cohomology theory E •E^\bullet is an element

c 1 E∈E˜ 2(BU(1)) c_1^E \in \tilde E^2(B U(1))

(the “first generalized Chern class”) such that

i *c 1 E=1∈π 0(E). i^\ast c^E_1 = 1 \in \pi_0(E) \,.

(complex EE-orientation by extensions and their obstructions)

In terms of classifying maps, Def. means that a complex orientation c 1 Ec_1^E in EE-cohomology theory is equivalently an extension (in the classical homotopy category) of the map Σ 21:ℂP 1⟶Ω ∞−2E\Sigma^2 1 \,\colon\, \mathbb{C}P^1 \longrightarrow \Omega^{\infty-2} E (which classifies the suspended identity in the cohomology ring) along the canonical inclusion of complex projective spaces

(1)ℂP 1 ⟶Σ 21 E Ω ∞−2E ↓ ↗ c 1 E ℂP ∞ \array{ \mathbb{C}P^1 & \overset{ \Sigma^2 1_E }{ \longrightarrow } & \Omega^{\infty - 2} E \\ \big\downarrow & \nearrow \mathrlap{ {}_{c_1^E} } \\ \mathbb{C}P^\infty }

Notice that the complex projective spaces form a cotower

*=ℂP 0↪ℂP 1↪ℂP 2↪ℂP 3↪⋯↪ℂP ∞=lim⟶ℂP • \ast \,=\, \mathbb{C}P^0 \hookrightarrow \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^2 \hookrightarrow \mathbb{C}P^3 \hookrightarrow \cdots \hookrightarrow \mathbb{C}P^\infty \,=\, \underset{\longrightarrow}{\lim} \mathbb{C}P^\bullet

where each inclusion stage is (by this Prop., see at cell structure of projective spaces) the coprojection of a pushout of topological spaces (or rather: of pointed topological spaces) of the form

D 2n+2 ⟶ ℂP n+1 ↑ (po) ↑ S 2n+1 ⟶h ℂ 2n+1 ℂP n \array{ D^{2n+2} & \overset{}{\longrightarrow} & \mathbb{C}P^{n+1} \\ \big\uparrow &\mathclap{^{_{(po)}}}& \big\uparrow \\ S^{2n+1} &\underset{h^{2n+1}_{\mathbb{C}}}{\longrightarrow}& \mathbb{C}P^n }

(where h ℂ 2n+1h^{2n+1}_{\mathbb{C}} is the complex Hopf fibration in dimension 2n+12n+1) hence of a homotopy pushout of underlying homotopy types (rather: of pointed homotopy types) of this form:

* ⟶ ℂP n+1 ↑ (hpo) ↑ S 2n+1 ⟶h ℂ 2n+1 ℂP n \array{ \ast & \overset{}{\longrightarrow} & \mathbb{C}P^{n+1} \\ \big\uparrow &\mathclap{^{_{(hpo)}}}& \big\uparrow \\ S^{2n+1} &\underset{h^{2n+1}_{\mathbb{C}}}{\longrightarrow}& \mathbb{C}P^n }

Therefore, a complex orientation by extension (1) is equivalently the homotopy colimiting map of a sequence

(Σ 21=c 1 E,0,c 1 E,1,c 1 E,2,⋯) \big( \Sigma^2 1 \,=\, c_1^{E,0} ,\, c_1^{E,1} ,\, c_1^{E,2} ,\, \cdots \big)

of finite-stage extensions

* ⟶ ℂP n+1 ⟶c 1 E,n+1 Ω ∞−2E ↑ (hpo) ↑ ↗ c 1 E,n S 2n+1 ⟶h ℂ 2n+1 ℂP n. \array{ \ast & \overset{}{\longrightarrow} & \mathbb{C}P^{n+1} & \overset{ c_1^{E,n+1} }{\longrightarrow} & \Omega^{\infty -2} E \\ \big\uparrow &\mathclap{^{_{(hpo)}}}& \big\uparrow & \nearrow \mathrlap{ {}_{c_1^{E,n}} } \\ S^{2n+1} &\underset{h^{2n+1}_{\mathbb{C}}}{\longrightarrow}& \mathbb{C}P^n \,. }

Moreover, by the defining universal property of the homotopy pushout, the extension c 1 E,n+1c_1^{E,n+1} of c 1 E,nc_1^{E,n} is equivalently a choice of homotopy which trivializes the pullback of c 1 E,nc_1^{E,n} to the 2n+1-sphere:

* ⟶ Ω ∞−2E ↑ c 1 E,n+1⇘ ↑c 1 E,n S 2n+1 ⟶h ℂ 2n+1 ℂP n. \array{ \ast & \overset{}{\longrightarrow} & \Omega^{\infty - 2} E \\ \big\uparrow & {}_{ c_1^{E,n+1} } \seArrow & \big\uparrow \mathrlap{ ^{_{ c_1^{E,n} }} } \\ S^{2n+1} &\underset{ h^{2n+1}_{\mathbb{C}} }{\longrightarrow}& \mathbb{C}P^n \,. }

This means, first of all, that the non-triviality of the pullback class

(h ℂ 2n+1) *(c 1 E,n)∈E˜ 2(S 2n+1)≃E 2n−1 \big( h^{2n+1}_{\mathbb{C}} \big)^\ast ( c_1^{E,n} ) \;\in\; \widetilde E^2 \big( S^{2n+1} \big) \;\simeq\; E_{2n-1}

is the obstruction to the existence of the extension/orientation at this stage.

It follows that if these obstructions all vanish, then a complex EE-orientation does exist.

A sufficient condition for this is, evidently, that the reduced EE-cohomology of all odd-dimensional spheres vanishes, hence, that the graded EE-cohomology ring E •E_\bullet is trivial in odd degrees (an even cohomology theory).

(see also Lurie, Lecture 6, Remark 4)

In terms of orientations of fibers of complex vector bundles

In terms of genera

Complex orientation in the above sense is indeed universal MU-orientation in generalized cohomology:

(Hopkins 99, section 4, Lurie, lecture 6, theorem 8)

See at universal complex orientation on MU.

Examples

Examples of complex orientable cohomology theories:

Example

(complex cobordism)

For E=MUE = MU complex cobordism cohomology theory, the canonical map

BU(1)→≃MU(1)→MU B U(1) \stackrel{\simeq}{\to} MU(1) \to MU

defines a complex orientation.

Properties

Cohomology ring of BU(1)B U(1)

Proposition

Given a complex oriented cohomology theory (E •,c 1 E)(E^\bullet, c^E_1) according to def. , then there are isomorphisms of graded rings

  1. E •(BU(1))≃E •(*)[[c 1 E]]E^\bullet(B U(1)) \simeq E^\bullet(\ast)[ [ c_1^E ] ]

    (between the EE-cohomology ring of BU(1)B U(1) and the formal power series (but see remark ) in one generator of even degree over the EE-cohomology ring of the point);

  2. E •(BU(1)×BU(1))≃E •(*)[[c 1 E⊗1,1⊗c 1 E]]E^\bullet(B U(1) \times B U(1)) \simeq E^\bullet(\ast)[ [ c_1^E \otimes 1 , 1 \otimes c_1^E ] ].

Proof

We may realize the classifying space BU(1)B U(1) as the infinite complex projective space ℂP ∞=lim⟵ nℂP n\mathbb{C}P^\infty = \underset{\longleftarrow}{\lim}_n \mathbb{C}P^n (exmpl.). There is a standard CW-complex-structure on the classifying space ℂP ∞\mathbb{C}P^\infty, given by inductively identifying ℂP n+1\mathbb{C}P^{n+1} with the result of attaching a single 2n2n-cell to ℂP n\mathbb{C}P^n (prop.). With this structure, the unique 2-cell inclusion i:S 2↪ℂP ∞i \;\colon\; S^2 \hookrightarrow \mathbb{C}P^\infty is identified with the canonical map S 2→BU(1)S^2 \to B U(1).

Then consider the Atiyah-Hirzebruch spectral sequence for the EE-cohomology of ℂP n\mathbb{C}P^n.

H •(ℂP n,E •(*))⇒E •(ℂP n). H^\bullet(\mathbb{C}P^n, E^\bullet(\ast)) \;\Rightarrow\; E^\bullet(\mathbb{C}P^n) \,.

Since (prop.) the ordinary cohomology with integer coefficients of projective space is

H •(ℂP n,ℤ)≃ℤ[c 1]/((c 1) n+1), H^\bullet(\mathbb{C}P^n, \mathbb{Z}) \simeq \mathbb{Z}[c_1]/((c_1)^{n+1}) \,,

where c 1c_1 represents a unit in H 2(S 2,ℤ)≃ℤH^2(S^2, \mathbb{Z})\simeq \mathbb{Z}, and since similarly the ordinary homology of ℂP n\mathbb{C}P^n is a free abelian group (prop.), hence a projective object in abelian groups (prop.), the Ext-group vanishes in each degree (Ext 1(H n(ℂP n),E •(*))=0Ext^1(H_n(\mathbb{C}P^n), E^\bullet(\ast)) = 0) and so the universal coefficient theorem (prop.) gives that the second page of the spectral sequence is

H •(ℂP n,E •(*))≃E •(*)[c 1]/(c 1 n+1). H^\bullet(\mathbb{C}P^n, E^\bullet(\ast)) \simeq E^\bullet(\ast)[ c_1 ] / (c_1^{n+1}) \,.

By the standard construction of the Atiyah-Hirzebruch spectral sequence (here) in this identification the element c 1c_1 is identified with a generator of the relative cohomology

E 2((ℂP n) 2,(ℂP n) 1)≃E˜ 2(S 2) E^2((\mathbb{C}P^n)_2, (\mathbb{C}P^n)_1) \simeq \tilde E^2(S^2)

(using, by the above, that this S 2S^2 is the unique 2-cell of ℂP n\mathbb{C}P^n in the standard cell model).

This means that c 1c_1 is a permanent cocycle of the spectral sequence (in the kernel of all differentials) precisely if it arises via restriction from an element in E 2(ℂP n)E^2(\mathbb{C}P^n) and hence precisely if there exists a complex orientation c 1 Ec_1^E on EE. Since this is the case by assumption on EE, c 1c_1 is a permanent cocycle. (For the fully detailed argument, see (Pedrotti 16)).

The same argument applied to all elements in E •(*)[c]E^\bullet(\ast)[c], or else the E •(*)E^\bullet(\ast)-linearity of the differentials (prop.), implies that all these elements are permanent cocycles.

Since the AHSS of a multiplicative cohomology theory is a multiplicative spectral sequence (prop.) this implies that the differentials in fact vanish on all elements of E •(*)[c 1]/(c 1 n+1)E^\bullet(\ast) [c_1] / (c_1^{n+1}), hence that the given AHSS collapses on the second page to give

ℰ ∞ •,•≃E •(*)[c 1 E]/((c 1 E) n+1) \mathcal{E}_\infty^{\bullet,\bullet} \simeq E^\bullet(\ast)[ c_1^{E} ] / ((c_1^E)^{n+1})

or in more detail:

ℰ ∞ p,•≃{E •(*) ifp≤2nandeven 0 otherwise. \mathcal{E}_\infty^{p,\bullet} \simeq \left\{ \array{ E^\bullet(\ast) & \text{if}\; p \leq 2n \; and\; even \\ 0 & otherwise } \right. \,.

Moreover, since therefore all ℰ ∞ p,•\mathcal{E}_\infty^{p,\bullet} are free modules over E •(*)E^\bullet(\ast), and since the filter stage inclusions F p+1E •(X)↪F pE •(X)F^{p+1} E^\bullet(X) \hookrightarrow F^{p}E^\bullet(X) are E •(*)E^\bullet(\ast)-module homomorphisms (prop.) the extension problem trivializes, in that all the short exact sequences

0→F p+1E p+•(X)⟶F pE p+•(X)⟶ℰ ∞ p,•→0 0 \to F^{p+1}E^{p+\bullet}(X) \longrightarrow F^{p}E^{p+\bullet}(X) \longrightarrow \mathcal{E}_\infty^{p,\bullet} \to 0

split (since the Ext-group Ext E •(*) 1(ℰ ∞ p,•,−)=0Ext^1_{E^\bullet(\ast)}(\mathcal{E}_\infty^{p,\bullet},-) = 0 vanishes on the free module, hence projective module ℰ ∞ p,•\mathcal{E}_\infty^{p,\bullet}).

In conclusion, this gives an isomorphism of graded rings

E •(ℂP n)≃⊕pℰ ∞ p,•≃E •(*)[c 1]/((c 1 E) n+1). E^\bullet(\mathbb{C}P^n) \simeq \underset{p}{\oplus} \mathcal{E}_\infty^{p,\bullet} \simeq E^\bullet(\ast)[ c_1 ] / ((c_1^{E})^{n+1}) \,.

A first consequence is that the projection maps

E •((ℂP ∞) 2n+2)=E •(ℂP n+1)→E •(ℂP n)=E •((ℂP ∞) 2n) E^\bullet((\mathbb{C}P^\infty)_{2n+2}) = E^\bullet(\mathbb{C}P^{n+1}) \to E^\bullet(\mathbb{C}P^{n}) = E^\bullet((\mathbb{C}P^\infty)_{2n})

are all epimorphisms. Therefore this sequence satisfies the Mittag-Leffler condition (def., exmpl.) and therefore the Milnor exact sequence for generalized cohomology (prop.) finally implies the claim:

E •(BU(1)) ≃E •(ℂP ∞) ≃E •(lim⟶ nℂP n) ≃lim⟵ nE •(ℂP n) ≃lim⟵ n(E •(*)[c 1 E]/((c 1 E) n+1)) ≃E •(*)[[c 1 E]], \begin{aligned} E^\bullet(B U(1)) & \simeq E^\bullet(\mathbb{C}P^\infty) \\ & \simeq E^\bullet( \underset{\longrightarrow}{\lim}_n \mathbb{C}P^n ) \\ &\simeq \underset{\longleftarrow}{\lim}_n E^\bullet(\mathbb{C}P^n) \\ &\simeq \underset{\longleftarrow}{\lim}_n ( E^\bullet(\ast) [c_1^E] / ((c_1^E)^{n+1}) ) \\ & \simeq E^\bullet(\ast)[ [ c_1^E ] ] \,, \end{aligned}

where the last step is this prop..

Formal group law

Let again BU(1)B U(1) be the classifying space for complex line bundles, modeled, in particular, by infinite complex projective space ℂP ∞)\mathbb{C}P^\infty).

Lemma

There is a continuous function

μ:ℂP ∞×ℂP⟶ℂP ∞ \mu \;\colon\; \mathbb{C}P^\infty \times \mathbb{C}P \longrightarrow \mathbb{C}P^\infty

which represents the tensor product of line bundles in that under the defining equivalence, and for XX any paracompact Hausdorff space (notably a CW-complex, since all CW-complexes are paracompact Hausdorff spaces), then

[X,ℂP ∞×ℂP ∞] ≃ ℂLineBund(X) /∼×ℂLineBund(X) /∼ [X,μ]↓ ↓ ⊗ [X,ℂP ∞] ≃ ℂLineBund(X) /∼, \array{ [X, \mathbb{C}P^\infty \times \mathbb{C}P^\infty] &\simeq& \mathbb{C}LineBund(X)_{/\sim} \times \mathbb{C}LineBund(X)_{/\sim} \\ {}^{\mathllap{[X,\mu]}}\downarrow && \downarrow^{\mathrlap{\otimes}} \\ [X,\mathbb{C}P^\infty] &\simeq& \mathbb{C}LineBund(X)_{/\sim} } \,,

where [−,−][-,-] denotes the hom-sets in the (Serre-Quillen-)classical homotopy category and ℂLineBund(X) /∼\mathbb{C}LineBund(X)_{/\sim} denotes the set of isomorphism classes of complex line bundles on XX.

Together with the canonical point inclusion *→ℂP ∞\ast \to \mathbb{C}P^\infty, this makes ℂP ∞\mathbb{C}P^\infty an abelian group object in the classical homotopy category (an abelian H-group).

Proposition

Let (E,c 1 E)(E, c_1^E) be a complex oriented cohomology theory. Under the identification

E •(ℂP ∞)≃π •(E)[[c 1 E]],E •(ℂP ∞×ℂP ∞)≃π •(E)[[c 1 E⊗1,1⊗c 1 E]] E^\bullet(\mathbb{C}P^\infty) \simeq \pi_\bullet(E)[ [ c^E_1 ] ] \;\;\;\,, \;\;\; E^\bullet(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \simeq \pi_\bullet(E)[ [ c^E_1 \otimes 1 , \, 1 \otimes c^E_1 ] ]

from prop. , the operation

π •(E)[[c 1 E]]≃E •(ℂP ∞)⟶E •(ℂP ∞×ℂP ∞)≃π •(E)[[c 1 E⊗1,1⊗c 1 E]] \pi_\bullet(E) [ [ c^E_1 ] ] \simeq E^\bullet(\mathbb{C}P^\infty) \longrightarrow E^\bullet( \mathbb{C}P^\infty \times \mathbb{C}P^\infty ) \simeq \pi_\bullet(E)[ [ c_1^E \otimes 1, 1 \otimes c_1^E ] ]

of pullback in EE-cohomology along the maps from lemma constitutes a 1-dimensional graded-commutative formal group law (exmpl.) over the graded commutative ring π •(E)\pi_\bullet(E) (prop.). If we consider c 1 Ec_1^E to be in degree 2, then this formal group law is compatibly graded.

Proof

The associativity and commutativity conditions follow directly from the respective properties of the map μ\mu in lemma . The grading follows from the nature of the identifications in prop. .

Cohomology ring of BU(n)B U(n)

Proposition

For EE a complex oriented cohomology theory and n∈ℕn \in \mathbb{N}, restriction along the canonical map

(BU(1)) n⟶BU(n) (B U(1))^n \longrightarrow B U(n)

induces an isomorphism

E •(BU(n))⟶≃(π •E)[[c 1 E,⋯,c n E]]≃E •((BU(1)) n) Σ n↪E •((BU(1)) n)≃(π •E)[[(c 1 E) 1,⋯(c 1 E) n]], E^\bullet(B U(n)) \stackrel{\simeq}{\longrightarrow} (\pi_\bullet E)[ [ c^E_1, \cdots, c^E_n ] ] \simeq E^\bullet((B U(1))^n)^{\Sigma_n} \hookrightarrow E^\bullet((B U(1))^n) \simeq (\pi_\bullet E)[ [(c_1^E)_1, \cdots (c_1^E)_n ] ] \,,

of E •(BU(n))E^\bullet(B U(n)) with the cyclic group-invariants in E •((BU(1)) n)E^\bullet((B U(1))^n), hence with the power series ring in the elementary symmetric polynomials c i Ec_i^E (the generalized Chern classes) in the c 1 Ec_1^E-s (the generalized first Chern classes of prop. ).

Use this proposition to reduce to the situation for ordinary Chern classes. (e.g. Lurie 10, lecture 4)

Canonical orientation on complex vector bundles

The follows says that complex oriented cohomology theories in the sense of def. , indeed canonically have an orientation in generalized cohomology for the (spherical fibration of) any complex vector bundle.

For more details see at universal complex orientation on MU.

Proof

Observe that the sphere bundle S(ζ n)→BU(n)S(\zeta_n) \to B U(n) of the universal complex vector bundle is equivalently the canonical map BU(n−1)→BU(n)B U(n-1) \to B U(n).

This follows form the fact that S 2n−1≃U(n)/U(n−1)S^{2n-1} \simeq U(n)/U(n-1) and that hence the unit sphere bundle is equivalently the quotient of the U(n)U(n)-universal principal bundle by U(n−1)U(n-1)

U(n) ⟶ * ↓ BU(n)↦S 2n−1≃ U(n)/U(n−1) ⟶ BU(n−1) ↓ BU(n). \array{ U(n) &\longrightarrow& \ast \\ && \downarrow \\ && B U(n) } \;\;\;\; \stackrel{}{\mapsto}\;\;\;\; \array{ S^{2n-1} \simeq & U(n)/U(n-1) &\longrightarrow& B U(n-1) \\ & && \downarrow \\ & && B U(n) } \,.

The unit ball bundle B(ζ n)B(\zeta_n) is weakly equivalent to BU(n)B U(n), and under this identification the map S(ζ n)→B(ζ n)S(\zeta_n) \to B(\zeta_n) is equivalent to BU(n−1)→BU(n)B U(n-1) \to B U(n).

Proposition

For EE a complex oriented cohomology theory, its nnth generalized Chern class c n Ec^E_n, prop. , identified as an element of E •(B(ζ n),S(ζ n))E^\bullet(B(\zeta_n), S(\zeta_n)) via prop. , is a Thom class.

(e.g. Lurie 10, lecture 5, prop. 6)

References

General

Textbook accounts:

Introduction includes

The perspective of chromatic homotopy theory originates in

and is further developed in

See also the references at equivariant cohomology – References – Complex oriented cohomology-.

A comparison between complex orientations and H ∞H_\infty ring maps out of MUMU was given in

  • Matthew Ando, Operations in complex-oriented cohomology theories related to subgroups of formal groups (PhD Thesis)

More recent developments include

Refinement to equivariant complex oriented cohomology theory:

Finite-dimensional complex orientation and Ravenel’s spectra

Discussion of complex orientation (in Whitehead generalized cohomology) on (only) those complex vector bundles which are pulled back from base spaces of bounded cell-dimension (Hopkins 84, 1.2, Ravenel 86, 6.5.2) – or rather, for the most part, of Ravenel's Thom spectra X(n)X(n) and T(m)T(m) (Ravenel 84, Sec. 3) which co-represent these:

Last revised on March 9, 2025 at 10:18:08. See the history of this page for a list of all contributions to it.