The Dirac Electron (changes) in nLab
Showing changes from revision #9 to #10: Added | Removed | Changed
Context
Physics
physics, mathematical physics, philosophy of physics
Surveys, textbooks and lecture notes
theory (physics), model (physics)
experiment, measurement, computable physics
-
-
-
Axiomatizations
-
Tools
-
Structural phenomena
-
Types of quantum field thories
-
∞\infty-Chern-Weil theory
Ingredients
Connection
Curvature
Theorems
Contents
Idea
The purpose of this page is to explain - using appropriate mathematical terminology - Dirac’s theory of coupling particles with spin to a Yang-Mills gauge field.
We proceed in three steps: first we recall relevant facts about the gauge field itself, then we discuss charged particles in gauge fields, and finally we add spin.
Yang-Mills Theory
(see: the main article about Yang-Mills theory)
Under a spacetime we understand a smooth, oriented, pseudo-Riemannian manifold.
Definition
A Yang-Mills theory over a spacetime MM is:
-
A Lie group GG, called the gauge group, together with an Ad\mathrm{Ad}-invariant scalar product κ:𝔤×𝔤→R\kappa: \mathfrak{g} \times \mathfrak{g} \to \R on its Lie algebra 𝔤\mathfrak{g}.
-
A GG-principal bundle PP over MM.
A gauge field is a connection ω∈Ω 1(P,𝔤)\omega \in \Omega^1(P,\mathfrak{g}) on PP. The action functional is
S YM(ω):=12∫ M‖F ω‖ κ 2. S_{YM}(\omega) := \frac{1}{2} \int_M \| F_{\omega} \|_\kappa^2.
Definition
A gauge transformation is a smooth bundle morphism g:P→Pg: P \to P.
Theorem
The Yang-Mills action functional S YMS_{YM} is gauge-invariant, i.e.
S YM(g *ω)=S YM(ω) S_{YM}(g^{*}\omega) = S_{YM}(\omega)
for all gauge transformations g:P→Pg:P \to P.
Proof
We have g *ω=Ad g˜ −1(ω)−g˜ *θ¯g^{*}\omega = \mathrm{Ad}_{\tilde g}^{-1}(\omega) - \tilde g^{*}\bar\theta and g *Ω=Ad g˜ −1(Ω)g^{*}\Omega = \mathrm{Ad}_{\tilde g}^{-1}(\Omega). Under the isomorphism Ω k(P,Ad)≅Ω 2(M,Ad(P))\Omega^k(P,\mathrm{Ad}) \cong \Omega^2(M,\mathrm{Ad}(P)) this corresponds to F g *ω=Ad g(F ω)F_{g^{*}\omega} = \mathrm{Ad}_{g} (F_{\omega}). Since the bilinear form κ\kappa is Ad\mathrm{Ad}-invariant by assumption,
‖F g *ω‖=Ad g(F ω)∧ κAd g(F ω)=F ω∧ κF ω=‖F ω‖. \| F_{g^{*}\omega} \| = \mathrm{Ad}_{g} (F_{\omega}) \wedge_{\kappa} \mathrm{Ad}_{g} (F_{\omega}) = F_{\omega} \wedge_{\kappa} F_{\omega} = \| F_{\omega}\|.
Example
Let MM be a spacetime. A classical electromagnetic field theory over MM is a Yang-Mills Theory over MM with gauge group G=U(1)G=U(1). In more detail:
-
for an electromagnetic field theory given by a U(1)U(1)-bundle PP over MM, we have Ad(P)≅P×R\mathrm{Ad}(P) \cong P \times \R, so that Ω k(M,Ad(P))≅Ω k(M)\Omega^k(M,\mathrm{Ad}(P)) \cong \Omega^k(M) and Ω Ad k(P,𝔤)≅Ω Ad k(P)\Omega^k_{\mathrm{Ad}}(P,\mathfrak{g})\cong \Omega^k_{\mathrm{Ad}}(P). In particular, F ω∈Ω 2(M)F_{\omega} \in \Omega^2(M).
-
Since U(1)U(1) is abelian, d(Ad)=0\mathrm{d}(\mathrm{Ad}) = 0 and so D ω=d\mathrm{D}^{\omega}=\mathrm{d} on Ω Ad k(P)\Omega^{k}_{\mathrm{Ad}}(P).
-
Thus, the Yang-Mills equations reduce to Maxwell’s equations for an electromagnetic field on MM:
d⋆F ω=0 and dF ω=0. \mathrm{d}\star F_{\omega} = 0 \quad\text{ and }\quad \mathrm{d}F_{\omega}=0 \text{.}
General Matter Fields
Definition
Let GG be a gauge group. A matter type for GG is a tuple (V,h,ρ,f)(V,h,\rho,f) consisting of:
-
a finite-dimensional real vector space VV called the internal state space.
-
a scalar product h:V×V→Rh: V \times V \to \R.
-
a representation ρ:G×V→V\rho: G \times V \to V that is isometric with respect to hh i.e. h(ρ(g)(v),ρ(g)(w))=h(v,w)h(\rho(g)(v),\rho(g)(w)) = h(v,w).
-
a smooth function f:V→Rf: V \to \R that is ρ\rho-invariant, i.e. f(ρ(g)(v))=f(v)f(\rho(g)(v))=f(v).
Definition
Let PP be a principal GG-bundle over MM, and let 𝒯=(V,h,ρ,f)\mathcal{T} =(V,h,\rho,f) be a matter type for GG. A field for PP of type 𝒯\mathcal{T} is a smooth section ϕ:M→P× ρV\phi: M \to P \times_{\rho} V. Its action functional is
S 𝒯(ω,ϕ):=∫ M‖D ω(ϕ)‖ h 2+⋆(f∘ϕ). S_{\mathcal{T}}(\omega,\phi) := \int_M \;\|\, \mathrm{D}^{\omega}(\phi)\, \|^2_{h} + \star (f \circ \phi) \text{.}
Theorem
The action functional S 𝒯S_{\mathcal{T}} is gauge invariant, i.e.
S 𝒯(g *ω,g *ϕ)=S 𝒯(ω,ϕ) S_{\mathcal{T}}(g^{*}\omega,g^{*}\phi) = S_{\mathcal{T}}(\omega,\phi)
for all gauge transformations g:P→Pg:P \to P.
Proof
One calculates that g *ω=Ad g˜ −1(ω)−g˜ *θ¯g^{*}\omega = \mathrm{Ad}_{\tilde g}^{-1}(\omega) - \tilde g^{*}\bar\theta, where g˜:P→G\tilde g:P \to G is the smooth map associated to gg via g(p)=p⋅g˜(p)g(p) = p\cdot \tilde g(p). Further, g *ψ=ρ(g˜ −1)(ψ)g^{*}\psi = \rho(\tilde g^{-1})(\psi). A computation shows
d(ρ(g˜ −1)(ψ))=ρ(g˜ −1)(dψ)+g˜ *θ¯∧ dρρ(g˜ −1)(ψ), \mathrm{d}(\rho(\tilde g^{-1})(\psi)) = \rho(\tilde g^{-1})(\mathrm{d}\psi) + \tilde g^{*}\bar\theta\wedge_{\mathrm{d}\rho} \rho(\tilde g^{-1})(\psi)\text{,}
where dρ:𝔤⊗V→V\mathrm{d}\rho: \mathfrak{g} \otimes V \to V. Now we compute
d g *ω(g *ψ)\quad\quad\mathrm{d}^{g^{*}\omega}(g^{*}\psi)
=dρ(g˜ −1,ψ)+g *ω∧ dρρ(g˜ −1,ψ)\quad\quad\quad\quad= \mathrm{d}\rho(\tilde g^{-1},\psi) + g^{*}\omega \wedge_{\mathrm{d}\rho} \rho(\tilde g^{-1},\psi)
=ρ(g˜ −1,dψ)+g˜ *θ¯∧ dρρ(g˜ −1,ψ)+(Ad g˜ −1(ω)−g˜ *θ¯)∧ dρρ(g˜ −1,ψ)\quad\quad\quad\quad= \rho(\tilde g^{-1},\mathrm{d}\psi) + \tilde g^{*}\bar\theta\wedge_{\mathrm{d}\rho} \rho(\tilde g^{-1},\psi) + (\mathrm{Ad}_{\tilde g}^{-1}(\omega) - \tilde g^{*}\bar\theta) \wedge_{\mathrm{d}\rho} \rho(\tilde g^{-1},\psi)
=ρ(g˜ −1,dψ)+ρ(g˜ −1,ω∧ dρψ)\quad\quad\quad\quad= \rho(\tilde g^{-1},\mathrm{d}\psi) + \rho(\tilde g^{-1},\omega\wedge_{\mathrm{d}\rho} \psi)
=ρ(g˜ −1,d ωψ).\quad\quad\quad\quad= \rho(\tilde g^{-1},\mathrm{d}^{\omega}\psi)\text{.}
Since hh is invariant, the invariance of the first term follows. The invariance of the second term is clear.
Example
(Scalar particle in an external, trivial gauge field)
We consider G={e}G=\left \lbrace e \right \rbrace, P=MP=M, so that necessarily ω=0\omega=0. A scalar field is field for MM of matter type (R,h,id,f)(\R,h,\id,f) where f(x):=−12m 2x 2f(x) := -\frac{1}{2}m^2x^2 and h(x,y)=xyh(x,y) = x y. The action functional is
S(0,ϕ)=12∫ M‖dϕ‖ h 2+⋆m 2ϕ 2. S(0,\phi) =\frac{1}{2} \int_M \| \mathrm{d}\phi \|_h^2 +\star m^{2}\phi^2\text{.}
The Euler-Lagrange equation is the Klein-Gordon equation
(▵+m 2)ϕ=0, (\triangle + m^2)\phi = 0\text{,}
where ▵:=δ∘d:Ω k(M)→Ω k(M)\triangle := \delta \circ \mathrm{d}: \Omega^k(M) \to \Omega^{k}(M) is the Laplace operator and δ:=⋆d⋆\delta := \star \mathrm{d} \star is the exterior coderivative.
Example
(Charged particle in an electromagnetic field, e.g. a π −\pi^{-}-meson)
Let PP be a U(1)U(1)-principal bundle over MM. A field of charge n∈Zn \in \Z is a field for PP of matter type (C,h,ρ n,f)(\C,h,\rho_n,f), where ρ n:U(1)×C→C\rho_n: U(1) \times \C \to \C is defined by ρ n(z,z′):=z nz′\rho_n(z,z') := z^n z' and f(z):=−12m 2|z| 2f(z) := -\frac{1}{2}m^2|z|^2. The action functional is
S(ω,ϕ)=12∫ M‖D ωϕ‖ 2+⋆m 2‖ϕ‖ 2. S(\omega,\phi) =\frac{1}{2} \int_M \| \mathrm{D}^{\omega}\phi \|^2 +\star m^{2} \| \phi \| ^2\text{.}
The Euler-Lagrange equation is covariant Klein-Gordon equation
(▵ ω+m 2)ϕ=0, (\triangle^{\omega} +m^2) \phi = 0\text{,}
where ▵ ω:=δ ω∘D ω\triangle^{\omega} :=\delta^{\omega}\circ \mathrm{D}^{\omega} is the covariant Laplace operator and δ ω:=⋆D ω⋆\delta^{\omega} := \star \mathrm{D}^{\omega} \star is the exterior covariant coderivative.
Matter Fields with Spin
The Klein-Gordon equations found above are – unlike the Schrödinger equation – of second order on time. Dirac’s motivation was to find a first order equation which upon iteration yields the Klein-Gordon equation. We first discuss free spinors (where free means that they are not coupled to an electromagnetic field, but still feel the “gravity” of the spacetime manifold), and then add the coupling.
Free Spinors
Example
We recall some facts about Clifford algebras and the spin group.
-
We denote by C(p,q)C(p,q) the Clifford algebra on R p,q\R^{p,q}, i.e. the quotient of the tensor algebra of R p+q\R^{p+q} by the ideal generated by v⊗w+w⊗v+2⟨v,w⟩⋅1v \otimes w + w \otimes v + 2 \left \langle v,w \right \rangle\cdot 1, where ⟨−,−⟩\left \langle -,- \right \rangle is the Minkowski scalar product of signature (p,q)(p,q).
-
The map v↦−vv \mapsto -v extends to an anti-automorphism α:C(p,q)→C(p,q)\alpha: C(p,q) \to C(p,q), whose eigenspace decomposition yields the usual Z 2\Z_2-grading on C(p,q)C(p,q).
-
We have dimC(p,q)=2 p+q\dim C(p,q) = 2^{p+q}.
-
The Clifford algebra inherits a bilinear form H(v,w):=(v trw) 0H(v,w) := (v^{tr}w)_0, where () tr()^{tr} is the anti-automorphism of the tensor algebra that reverts the order of tensor products, and () 0()_0 denotes the degree 0 part.
-
We denote by SO(p,q)SO(p,q) the group of linear maps R p+q→R p+q\R^{p+q}\to \R^{p+q} that preserve the product ⟨−,−⟩\left \langle -,- \right \rangle. We define
Spin(p,q):={v 1⋅...⋅v 2r∈C(p,q)∣v i∈R p+q,‖v i‖=1,r∈N}. Spin(p,q) := \left \lbrace v_{1}\cdot ... \cdot v_{2r}\in C(p,q)\mid v_i \in \R^{p+q}, \| v_i \|=1,r \in \N \right \rbrace \text{.}
Then, we define a group homomorphism Λ:Spin(p,q)→SO(p,q)\Lambda: Spin(p,q) \to SO(p,q) by Λ(φ)v=α(φ)vφ −1\Lambda(\varphi)v = \alpha(\varphi) v \varphi^{-1}. This gives a central extension
1→Z 2→Spin(p,q)→SO(p,q)→1. 1 \to \Z_2 \to Spin(p,q) \to SO(p,q) \to 1\text{.}
-
We denote by C(p,q):=C(p,q)⊗ RC\C(p,q) := C(p,q) \otimes_{\R} \C the complexification of the Clifford algebra. The bilinear form HH on C(p,q)C(p,q) extends to a sesquilinear form HH on C(p,q)\C(p,q) defined by H(v,w)=(v trw¯) 0H(v,w)=(v^{tr}\bar w)_0.
-
Multiplication in C(p,q)\C(p,q) restricts to an action of spinp,q\spin{p,q} on C(p,q)\C(p,q). One can decompose C(p,q)\C(p,q) into kk copies of a subrepresentation Σ\Sigma:
C(p,q)=Σ⊕...⊕Σ. \C(p,q) = \Sigma \oplus ... \oplus \Sigma \text{.}
-
The representation Σ\Sigma is isometric with respect to HH. If p+qp+q is odd, k=2 (p+q−1)/2k=2^{(p+q-1)/2}, and Σ\Sigma is irreducible. If p+qp+q is even, k=2 (p+q)/2k=2^{(p+q)/2}, and Σ=Σ +⊕Σ −\Sigma = \Sigma^{+} \oplus \Sigma^{-} with Σ ±\Sigma^{\pm} irreducible and dim CΣ ±=2 (p+q−2)/2\dim_{\C}\Sigma^{\pm}=2^{(p+q-2)/2}.
Definition
Let MM be a spacetime with spin structure SMSM, and considered as a Spin(p,q)Spin(p,q) as a Yang-Mills theory over MM. A free spinor is a field for SMSM of type (V,h,ρ,f)(V,h,\rho,f), where V⊂C(p,q)V \subset \C(p,q), the scalar product hh is
h(v,w):=12(H(v,w)+H(w,v)), h(v,w):=\frac{1}{2}(H(v,w) + H(w,v))\text{,}
and ρ\rho is the restriction of the multiplication in C(p,q)\C(p,q) to Spin(p,q)Spin(p,q). The action functional is
S(ψ):=∫ MDψ∧ h⋆ψ+⋆f∘ψ. S(\psi) := \int_M D \psi \wedge_{h} \star \psi + \star f \circ \psi\text{.}
Definition
The Euler-Lagrange equation determined by the action functional S(ψ)S(\psi) is the Dirac equation
Dψ+imψ=0. D\psi + \mathrm{i}m\psi = 0\text{.}
Definition
(Weyl spinors)
We assume spacetime to have even dimension. Weyl spinors have V=Σ ±V=\Sigma^{\pm}, with the sign corresponding to left/right-handed spinors. Thus, dim C(V)=2\dim_{\C}(V)=2. Further f=0f=0 (they are massless). In the standard model, neutrinos are left-handed Weyl spinors.
Definition
(Dirac spinors)
We assume spacetime to have signature (1,3)(1,3). Dirac spinors have V=Σ +⊕Σ −V=\Sigma^{+} \oplus \Sigma^{-}, so that dim C(V)=4\dim_{\C}(V)=4. The function ff is taken to be f(v)=−mh(v,v)f(v)=-mh(v,v). In the standard model, electrons are Dirac spinors.
Charged Spinors
Definition
Let MM be a spacetime with spin structure, let PP be a Yang-Mills theory with gauge group GG over MM, and let ρ P\rho_P be a representation of GG on VV commuting with ρ SM\rho_{SM}. A charged spinor is a field for SM∘PSM \circ P of type (V,h,ρ SM×ρ P,f)(V,h,\rho_{SM} \times \rho_P,f), where V⊂C(p,q)V \subset \C(p,q) and HH is given as before. Its action functional is
S(ω,ψ):=∫ MD ωψ∧ h⋆ψ+⋆f∘ψ. S(\omega, \psi) := \int_M D^{\omega} \psi \wedge_{h} \star \psi + \star f \circ \psi\text{.}
Definition
(Spinor in an electromagnetic field)
Here, ρ SM:Spin(p,q)→Gl(V)\rho_{SM}: Spin(p,q) \to \mathrm{Gl}(V) is some representation, and ρ P:U(1)→Gl(V)\rho_P: U(1) \to \mathrm{Gl}(V) is given by complex multiplication with z nz^{n}, where n∈Zn\in \Z is the charge of the spinor. Obviously ρ SM\rho_{SM} and ρ P\rho_P commute. The Euler-Lagrange equation is
D ωψ+imψ=0. D^{\omega}\psi + im\psi = 0\text{.}
If M=R 1,3M=\R^{1,3} one can take SM=M×SL(2,C)SM=M \times SL(2,\C). The canonical global section identifies ψ\psi with a smooth function ψ:R 3,1→C 4\psi: \R^{3,1} \to \C^4 and the connection ω\omega with a 1-form with components A iA_{i}. Then,
D ωψ=γ i(∂ i+A i)ψ. D^{\omega}\psi = \gamma^{i}(\partial_{i} + A_i)\psi\text{.}
This gives the “Dirac equation” one usually finds in a textbook.
standard model of particle physics and cosmology
theory: | Einstein- | Yang-Mills- | Dirac- | Higgs |
---|---|---|---|---|
gravity | electroweak and strong nuclear force | fermionic matter | scalar field | |
field content: | vielbein field ee | principal connection ∇\nabla | spinor ψ\psi | scalar field HH |
Lagrangian: | scalar curvature density | field strength squared | Dirac operator component density | field strength squared + potential density |
L=L = | R(e)vol(e)+R(e) vol(e) + | ⟨F ∇∧⋆ eF ∇⟩+\langle F_\nabla \wedge \star_e F_\nabla\rangle + | (ψ,D (e,∇)ψ)vol(e)+ (\psi , D_{(e,\nabla)} \psi) vol(e) + | ∇H¯∧⋆ e∇H+(λ|H| 4−μ 2|H| 2)vol(e) \nabla \bar H \wedge \star_e \nabla H + \left(\lambda {\vert H\vert}^4 - \mu^2 {\vert H\vert}^2 \right) vol(e) |
References
Useful literature on this topic is:
-
Christian Bär, Introduction to Spin Geometry, Oberwolfach Reports 53 (2006), p. 3135-3136.
-
D. Bleecker, Gauge Theory and Variational Principles, Addison-Weasley, 1981.
-
H. Blaine Lawson Jr. , Marie-Louise Michelson, Spin geometry, Princeton Univ. Press, 1989.
-
G. L. Naber, Topology, Geometry and Gauge Dields Fields, Springer, 1999.
Last revised on April 6, 2018 at 14:16:14. See the history of this page for a list of all contributions to it.