entanglement entropy (changes) in nLab
Showing changes from revision #14 to #15: Added | Removed | Changed
Context
Quantum Field systems Theory
algebraic quantum field logic theory (perturbative, on curved spacetimes, homotopical)
Concepts
\linebreak
-
classical quantum systems, pre-quantum, quantum, perturbative quantum
-
functorial quantum field theory
Lagrangian field theory\linebreak
quantum probability theory – observables and states
\linebreak
quantum mechanical information system, quantum probability
-
state quantum on entanglement a star-algebra, expectation value
-
picture entanglement of entropy quantum mechanics
free field quantization\linebreak
\linebreak
interacting quantum field computing quantization
-
S-matrix adiabatic quantum computation, scattering amplitude
-
interacting measurement-based field quantum algebra computation
-
quantum algorithms:
Theorems
States and observables
Operator algebra
Local QFT
Perturbative QFT
Measure and probability theory
Contents
Idea
entropy induced by entanglement in quantum physics , really essentially a synonym forsubsystemsubsystem entropy . entropy
If ρ\rho is a quantum state (density matrix) of some quantum systems and AA is a subsystem with complementary subsystemA¯\bar Asubsystem , the with its complementary entanglement subsystem entropy isA¯\overline{A}, then its entanglement entropy is
S A = ≔−Tr A(ρ Alnρ A),whereρ A≔Tr A¯(ρ). S_A \;=\; \;\coloneqq\; - Tr_{A}\big( \rho_A \ln \rho_A \big) \,, \;\;\; \text{where} \;\;\; \rho_A \;\coloneqq\; Tr_{\bar A}(\rho) \,.
for Special aspects:
ρ A≔Tr A¯(ρ).
\rho_A \;\coloneqq\; Tr_{\bar A}(\rho)
\,.
A constant contribution to S AS_A (i.e. independent of the choice of AA, in a suitable sense) is called a topological entanglement entropy indicating long-range entanglement and “topological order”, being proportional to the total quantum dimension of anyon-excitations. (See the references below.) On the other extreme, for short range entanglement the entanglement entropy is thought to scale with the surface area of the subsystem AA (to the extent that this makes sense, say in say in lattice models), a behaviour reminiscent of Bekenstein-Hawking entropy of black holes. For more on this see at holographic entanglement entropy. quantum probability theory – observables and states In AQFT: See also Identification On of a non-vanishing contribution to the (entanglement-)entropy at absolute entanglement zero entropy , due in to topological arithmetic order Chern-Simons theory / :topological phase (“topological entropy”): Alexei Kitaev, John Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 (arXiv:hep-th/0510092) Michael Levin, Xiao-Gang Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett., 96, 110405 (2006) (arXiv:cond-mat/0510613) Identification of a contribution to entanglement entropy at absolute zero which is independent of the subsystem’s size (“topological entanglement entropy”, “long-range entanglement”), reflecting topological order and proportional to the total quantum dimension of anyon excitations: Alexei Kitaev, John Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 (arXiv:hep-th/0510092) Michael Levin, Xiao-Gang Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett., 96, 110405 (2006) [[arXiv:cond-mat/0510613, doi:10.1103/PhysRevLett.96.110405]] (in view of string-net models) Review: Shunsuke Furukawa, Entanglement Entropy in Conventional and Topological Orders, talk at Topological Aspects of Solid State Physics 2008 (pdf, pdf) Tarun Grover, Entanglement entropy and strongly correlated topological matter, Modern Physics Letters A 28 05 (2013) 1330001 [[doi:10.1142/S0217732313300012]] Bei Zeng, Xie Chen, Duan-Lu Zhou, Xiao-Gang Wen: Sec. 5 of: Quantum Information Meets Quantum Matter – From Quantum Entanglement to Topological Phases of Many-Body Systems, Quantum Science and Technology (QST), Springer (2019) [[arXiv:1508.02595, doi:10.1007/978-1-4939-9084-9]] Experimental observation: A. Hamma, W. Zhang, S. Haas, and D. A. Lidar, Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order, Phys. Rev. B 77, 155111 (2008) (doi:10.1103/PhysRevB.77.155111, arXiv:0705.0026) Hong-Chen Jiang, Zhenghan Wang, Leon Balents, Identifying Topological Order by Entanglement Entropy, Nature Physics 8, 902-905 (2012) (arXiv:1205.4289) In terms of Renyi entropy (it’s independent of the Renyi entropy parameter): and in the example of Chern-Simons theory: Discussion in the dimer model: Discussion via holographic entanglement entropy: Ari Pakman, Andrei Parnachev, Topological Entanglement Entropy and Holography, JHEP 0807: 097 (2008) (arXiv:0805.1891) Andrei Parnachev, Napat Poovuttikul, Topological Entanglement Entropy, Ground State Degeneracy and Holography, Journal of High Energy Physics volume 2015, Article number: 92 (2015) (arXiv:1504.08244) See also: Relation of long-range entanglement to strong interaction: Jan Zaanen, Yan Liu, Ya-Wen Sun, Koenraad Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press 2015 [[doi:10.1017/CBO9781139942492]] In a way it appears obvious that the strongly interacting bosonic quantum critical state is subject to long-range entanglement. Nonetheless, the status of this claim is conjectural. It is at present impossible to arrive at more solid conclusions that are based on rigorous mathematical procedures. It does illustrate emphatically the central challenge in the pursuit of field-theoretical quantum information: there are as yet not general measures available to precisely enumerate the meaning of long-range entanglement in such seriously quantum field-theoretical systems. [[p. 527]] Tsung-Cheng Lu, Sagar Vijay, Characterizing Long-Range Entanglement in a Mixed State Through an Emergent Order on the Entangling Surface [[arXiv:2201.07792]] strongly interacting quantum phases of matter at zero temperature can exhibit universal patterns of long-range entanglement On characterizing anyon braiding / modular transformations on topologically ordered ground states by analysis of (topological) entanglement entropy of subregions: Yi Zhang, Tarun Grover, Ari M. Turner, Masaki Oshikawa, Ashvin Vishwanath, Quasiparticle statistics and braiding from ground-state entanglement, Phys. Rev. B 85 (2012) 235151 [[doi:10.1103/PhysRevB.85.235151]] Yi Zhang, Tarun Grover, Ashvin Vishwanath, General procedure for determining braiding and statistics of anyons using entanglement interferometry, Phys. Rev. B 91 (2015) 035127 [[arXiv:1412.0677, doi:10.1103/PhysRevB.91.035127]] Zhuan Li, Roger S. K. Mong, Detecting topological order from modular transformations of ground states on the torus, Phys. Rev. B 106 (2022) 235115 [[doi:10.1103/PhysRevB.106.235115](https://doi.org/10.1103/PhysRevB.106.235115), arXiv:2203.04329] Relation to irreducible correlation: Experimental observation: A. Hamma, W. Zhang, S. Haas, and D. A. Lidar, Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order, Phys. Rev. B 77, 155111 (2008) (doi:10.1103/PhysRevB.77.155111, arXiv:0705.0026) Hong-Chen Jiang, Zhenghan Wang, Leon Balents, Identifying Topological Order by Entanglement Entropy, Nature Physics 8 902-905 (2012) [[arXiv:1205.4289]] Detection of long-range entanglement entropy in quantum simulations on quantum computers: Realizing topologically ordered states on a quantum processor, Science 374 6572 (2021) 1237-1241 [[doi:10.1126/science.abi8378]] Probing topological spin liquids on a programmable quantum simulator, Science 374 6572 (2021) 1242-1247 [[doi:10.1126/science.abi8794]] exposition in:References
General
Topological entanglement entropy
General
Relation to strong interaction
Characterizing topological order
Simulation and experiment
Last revised on May 26, 2022 at 10:12:35. See the history of this page for a list of all contributions to it.