nonabelian Stokes theorem (changes) in nLab
Showing changes from revision #4 to #5: Added | Removed | Changed
Context
Differential geometry
synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
-
(shape modality ⊣\dashv flat modality ⊣\dashv sharp modality)
(esh⊣♭⊣♯)(\esh \dashv \flat \dashv \sharp )
-
dR-shape modality ⊣\dashv dR-flat modality
esh dR⊣♭ dR\esh_{dR} \dashv \flat_{dR}
-
(reduction modality ⊣\dashv infinitesimal shape modality ⊣\dashv infinitesimal flat modality)
(ℜ⊣ℑ⊣&)(\Re \dashv \Im \dashv \&)
-
fermionic modality ⊣\dashv bosonic modality ⊣\dashv rheonomy modality
(⇉⊣⇝⊣Rh)(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)
id ⊣ id ∨ ∨ fermionic ⇉ ⊣ ⇝ bosonic ⊥ ⊥ bosonic ⇝ ⊣ Rh rheonomic ∨ ∨ reduced ℜ ⊣ ℑ infinitesimal ⊥ ⊥ infinitesimal ℑ ⊣ & étale ∨ ∨ cohesive esh ⊣ ♭ discrete ⊥ ⊥ discrete ♭ ⊣ ♯ continuous ∨ ∨ ∅ ⊣ * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }
Models
-
Models for Smooth Infinitesimal Analysis
-
smooth algebra (C ∞C^\infty-ring)
-
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
∞\infty-Lie theory
∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
∞\infty-Lie groupoids
∞\infty-Lie groups
∞\infty-Lie algebroids
∞\infty-Lie algebras
Contents
Idea
The nonabelian Stokes theorem (e.g. Schreiber-Waldorf 11, theorem 3.4) is a generalization of the Stokes theorem to Lie algebra valued differential 1-forms and with integration of differential forms refined to parallel transport.
Statement
If A^∈Ω 1(D 2,𝔤)\hat A \in \Omega^1(D^2, \mathfrak{g}) is a Lie algebra valued 1-form on the 2-disk then the parallel transport 𝒫exp(∫ S 1A)\mathcal{P} \exp(\int_{S^1} A) of its restriction A∈Ω 1(S 1,𝔤)A \in \Omega^1(S^1, \mathfrak{g}) to the boundary circle, hence its holonomy (for a fixed choice of base point) is equal to a certain kind of adjusted 2-dimensional integral of its curvature 2-form F AF_A over D 2D^2.
In particular if F A^=0F_{\hat A} = 0 then the holonomy of AA is trivial.
Properties
Relation to higher parallel transport
In terms of the notion of connection on a 2-bundle the nonabelian Stokes theorem says that if A∈Ω 1(X,𝔤)A \in \Omega^1(X, \mathfrak{g}) is a Lie algebra valued 1-form, then (F A,A)(F_A, A) is a Lie 2-algebra valued 2-form with values in the inner derivation Lie 2-algebra inn(𝔤)inn(\mathfrak{g}) of 𝔤\mathfrak{g} whose curvature 3-form H=d AF AH = \mathbf{d}_A F_A vanishes (which is the Bianchi identity for F AF_A) and its higher parallel transport exists. The 2-functorial source-target matching condition in this higher parallel transport is the statement of the nonabelian Stokes theorem.
Relation to Lie integration
For F A=0F_A = 0 the nonabelian Stokes theorem may be regarded as proving that the Lie integration of 𝔤\mathfrak{g} by “the path method” (see at Lie integration) is indeed the simply connected Lie group corresponding to 𝔤\mathfrak{g} by Lie theory.
References
For instance theorem 3.4 in
-
Robert L. Karp, Freydoon Mansouri, Jung S. Rno, Product Integral Formalism and Non-Abelian Stokes Theorem, J. Math. Phys. 40 (1999) 6033-6043 [[arXiv:hep-th/9910173](https://arxiv.org/abs/hep-th/9910173), doi:10.1063/1.533068]
-
R. L. Karp, F. Mansouri, J. S. Rno, Product Integral Representations of Wilson Lines and Wilson Loops, and Non-Abelian Stokes Theorem, Turk. J. Phys. 24 (2000) 365-384 [[arXiv:hep-th/9903221](https://arxiv.org/abs/hep-th/9903221), journal page]
-
Boguslaw Broda, Non-Abelian Stokes theorem in action, in Modern Nonlinear Optics Part 2, Wiley (2001) 429-468 [[arXiv:math-ph/0012035](https://arxiv.org/abs/math-ph/0012035), ISBN:978-0-471-46612-3]
- Urs Schreiber, Konrad Waldorf, Smooth Functors vs. Differential Forms, Homology, Homotopy Appl., 13(1), 143-203 (2011) (arXiv:0802.0663)
In the context of higher parallel transport in principal 2-bundles with connection:
- Urs Schreiber, Konrad Waldorf, Theorem 3.4 in: Smooth Functors vs. Differential Forms, Homology, Homotopy Appl. 13 1 (2011) 143-203 [[arXiv:0802.0663](http://arxiv.org/abs/0802.0663), euclid:hha/1311953350]
See also:
- Seramika Ariwahjoedi, Freddy Permana Zen, Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions, Symmetry 2023 15 11 (2000) [[doi:10.3390/sym15112000]( https://doi.org/10.3390/sym15112000)]
Last revised on November 2, 2023 at 10:12:42. See the history of this page for a list of all contributions to it.