quantum mechanics (changes) in nLab
- ️Sat Apr 13 0430
Showing changes from revision #122 to #123: Added | Removed | Changed
Context
Quantum systems
\linebreak
\linebreak
quantum probability theory – observables and states
\linebreak
\linebreak
\linebreak
-
quantum algorithms:
Contents
Idea
While classical mechanics considers deterministic evolution of particles and fields, quantum physics follows nondeterministic evolution where the probability of various outcomes of measurement may be predicted from the state in a Hilbert space representing the possible reality: that state undergoes a unitary evolution, what means that the generator of the evolution is −1\sqrt{-1} times a Hermitean operator called the quantum Hamiltonian or the Hamiltonian operator of the system. The theoretical framework for describing this precisely is the quantum mechanics. It involves a constant of nature, Planck constant hh; some quantum systems with spatial interpretation in the limit h→0h\to 0 lead to classical mechanical systems (not all: some phenomena including non-integer spin are purely quantum mechanical, but the properties depending on their existence survive in the “classical” limit); in limited generality, one can motivate and find the nonfunctorial procedure to single out a right inverse to taking this classical limit under the name quantization.
While quantum mechanics may be formulated for a wide range of physical systems, interpreted as particles, extended particles and fields, the quantum mechanics of fields is often called the quantum field theory and the quantum mechanics of systems of a fixed finite number of particles is often viewed as the quantum mechanics in a narrow sense.
nPOV
Mathematically, despite the basic formalism of quantum mechanics which is sound and clear, there are two big areas which are yet not clear. One is to understand quantization, in all cases – of particles, fields, strings and so on. The second and possibly more central to nLab is a problem how to define rigorously a wide range of quantum field theories and some related quantum mechanical systems like the hypothetical superstring theory. Regarding that this is a central goal, we also put emphasis on the interpretation of quantum mechanics via the picture which is a special case of a FQFT, and where the time evolution functorially leads to evolution operators.
Definition
We discuss some basic notions of quantum mechanics.
Quantum mechanical systems
Recall the notion of a classical mechanical system: the formal dual of a real commutative Poisson algebra.
Definition
A quantum mechanical system is a star algebra (A,(−) *)(A, (-)^\ast) over the complex numbers. The category of of quantum mechanical systems is the opposite category of *\ast-algebras:
QuantMechSys:=*Alg ℂ op. QuantMechSys := {\ast}Alg_{\mathbb{C}}^{op} \,.
Observables and states
Definition
Given a quantum mechanical system in terms of a star algebra AA, we say
-
an observable is an element a∈Aa \in A such that a *=aa^\ast = a;
-
a state is a linear function ρ:A→ℂ\rho : A \to \mathbb{C} which is positive in the sense that for all a∈Aa \in A we have ρ(aa *)≥0∈ℝ↪ℂ\rho(a a^\ast) \geq 0 \in \mathbb{R} \hookrightarrow \mathbb{C}.
One also says that the internal classical mechanical system (Sh(Com(A)),A̲)(Sh(Com(A)), \underline{A}) is the “Bohrification” of the external quantum system AA. See there for more details.
Spaces of states
Given a *\ast-algebra AA together with a state ρ\rho on it, the GNS construction provides an inner product space H ρH_\rho together with an action of AA on H ρH_\rho and a vector Ω=(ρ)\Omega = \sqrt(\rho) – the vacuum vector? – such that for all a∈Aa \in A the value of the state ρ:A→ℂ\rho : A \to \mathbb{C} is obtained by applying aa to ρ\sqrt{\rho} and then taking the inner product with ρ\sqrt \rho:
ρ(A)=⟨ρ,aρ⟩. \rho(A) = \langle \sqrt\rho, a \sqrt \rho\rangle \,.
If the star algebra AA happens to be a C-star algebra, then this inner product space is naturally a Hilbert space.
Historically and still often in the literature, such a Hilbert space is taken as a fundamental input of the definition of quantum systems.
Traditionally, Dirac’s “bra-ket” notation is used to represent vectors in such Hilbert spaces of states, where |ψ⟩|\psi\rangle represents a state and ⟨ψ|\langle\psi| represents its linear adjoint. State evolutions are expressed as unitary maps. Self-adjoint operators represent physical quantities such as position and momentum and are called observables. Measurements are expressed as sets of projectors onto the eigenvectors of an observable.
In mixed state quantum mechanics, physical states are represented as density operators ρ\rho, state evolution as maps of the form ρ↦U †ρU\rho \mapsto U^\dagger \rho U for unitary maps UU, and measurements are positive operator-valued measures (POVM’s). There is a natural embedding of pure states into the space of density matrices: |ψ⟩↦|ψ⟩⟨ψ||\psi\rangle \mapsto |\psi\rangle\langle\psi|. So, one way to think of mixed states is a probabilistic mixture of pure states.
(1)ρ=∑ ia i|ψ i⟩⟨ψ i| \rho = \sum_i a_i |\psi_i\rangle\langle\psi_i|
Composite systems are formed by taking the tensor product of Hilbert spaces. If a pure state |Ψ⟩∈H 1⊗H 2|\Psi\rangle \in H_1 \otimes H_2 can be written as |ψ 1⟩⊗|ψ 2⟩|\psi_1\rangle \otimes |\psi_2\rangle for |ψ i⟩∈H i|\psi_i\rangle \in H_i it is said to be separable. If no such |ψ i⟩|\psi_i\rangle exist, |Ψ⟩|\Psi\rangle is said to be entangled. If a mixed state is separable if it is the sum of separable pure states. Otherwise, it is entangled.
Flows and time evolution
As for classical mechanics, 1-parameter families of flows in a quantum mechanical system are induced from observables a∈Aa \in A by
ddλb λ=1iℏ[b λ,a]. \frac{d}{d \lambda} b_\lambda = \frac{1}{i \hbar}[b_\lambda, a] \,.
In a non-relativistic system one specifies an observable HH – called the Hamiltonian – whose flow represents the time evolution of the system. (This is the Heisenberg picture.)
We comment on how to interpret this from the point of view of FQFT:
Quantum mechanics of point particles may be understood as a special case of the formalism of quantum field theory. It is interpreted as the quantum analog of the classical mechanics of point particles. Of course, we can take a configuration space of a system of particles looking like the configuration space of a single particle in a higher dimensional manifold.
Remark: related query on the relation between QFT and quantum mechanics (of particles and in general) can be found here.
One may usefully think of the quantum mechanics of a point particle propagating on a manifold XX as being (0+1)(0+1)-dimensional quantum field theory:
the fields of this system are maps Σ→X\Sigma \to X where Σ∈RiemBord 1\Sigma \in Riem Bord_1 are 1-dimensional Riemannian manifold cobordisms. These are the trajectories of the particle.
After quantization this yields a 1-dimensional FQFT given by a functor
U(−):RiemBord 1→Hilb U(-) : Riem Bord_1 \to Hilb
from cobordisms to Hilbert spaces (or some other flavor of vector spaces) that assigns
-
to the point the space of states ℋ\mathcal{H}, typically the space of L 2L_2-sections (with respect to a Riemannian metric on XX) of the background gauge field on XX under which the particle in question is charged
-
to the cobordism of Riemannian length tt the operator
U(t):=exp(tiℏH):ℋ→ℋ, U(t) := \exp\left(\frac{t}{i \hbar } H \right) : \mathcal{H} \to \mathcal{H} \,,
where HH is the Hamiltonian operator, typically of the form H=∇ †∘∇H = \nabla^\dagger \circ \nabla for ∇\nabla the covariant derivative of the given background gauge field.
Such a setup describes the quantum mechanics of a particle that feels forces of backgound gravity encoded in the Riemannian metric on XX and forces of background gauge fields (such as the electromagnetic field) encoded in the covariant derivative ∇\nabla.
(This is the Schrödinger picture.)
Quantum subsystems
Definition
For 𝒜\mathcal{A} an algebra describing a quantum system, def. 1, a subsystem is a subalgebra (a subobject) B↪𝒜B \hookrightarrow \mathcal{A}.
Two subsystems B 1,B 2↪𝒜B_1, B_2 \hookrightarrow \mathcal{A} are called independent subsystems if the linear map
B 1⊗B 2→𝒜 B_1 \otimes B_2 \to \mathcal{A}
(b 1,b 2)↦b 1⋅b 2 (b_1, b_2) \mapsto b_1 \cdot b_2
from the tensor product of algebras (the composite system) factors as an isomorphism
B 1⊗B 2→≃B 1∨B 2↪𝒜 B_1 \otimes B_2 \stackrel{\simeq}{\to} B_1 \vee B_2 \hookrightarrow \mathcal{A}
through the algebra B 1∨B 2B_1 \vee B_2 that is generated by B 1B_1 and B 2B_2 inside 𝒜\mathcal{A} (the smallest subalgebra containing both).
See for instance (BrunettiFredenhagen, section 5.2.2).
Definition
Given two independent subsystems B 1,B 2↪𝒜B_1, B_2 \hookrightarrow \mathcal{A}, and two states ρ 1:B 1→ℂ\rho_1 : B_1 \to \mathbb{C} and ρ 2:B 2→ℂ\rho_2 : B_2 \to \mathbb{C}, then the corresponding product state ρ 1⊗ρ 2\rho_1 \otimes \rho_2 on B 1∨B 2B_1 \vee B_2 is defined to be
(ρ 1⊗ρ 2):(b 1,b 2)↦ρ 1(b 1)ρ 2(b 2). (\rho_1 \otimes \rho_2) : (b_1 , b_2) \mapsto \rho_1(b_1) \rho_2(b_2) \,.
Definition
There exist states on B 1∨B 2B_1 \vee B_2 that are not (convex combinations of) product states. This phenomenon is called entanglement.
Formulations and formalization
Order-theoretic structure in quantum mechanics
See order-theoretic structure in quantum mechanics.
Quantum mechanics in terms of †\dagger-compact categories
Many aspects of quantum mechanics and quantum computation depend only on the abstract properties of Hilb characterized by the fact that it is a †-compact category.
For more on this see
Foundational theorems of quantum mechanics
The following circle of theorems
all revolve around the phenomenon that the “phase space” in quantum mechanics and hence the space of quantum states are all determined by the Jordan algebra structure on the algebra of observables, which in turn is determined by the poset of commutative subalgebras of the algebra of observables. See at order-theoretic structure in quantum mechanics for more on this.
There is also
which says roughly that linear maps between spaces of quantum states are unitary operators (or anti-unitary) already when they preserve norm, hence preserve probability.
Applications of quantum mechanics
Quantum mechanics, as opposed to classical mechanics, is necessary for an accurate description of reality whenever the characteristic scale is sufficiently small. For instance
-
In chemistry (“quantum chemistry”) the properties of atoms and molecules are derived from quantum mechanics.
-
In solid state physics the properties of metals etc. are described by quantum mechanics of electron gases.
-
In particle physics of course, quantum field theory is the appropriate description.
Examples
-
quantum mechanics
References
Historical origins
The seed of quantum mechanics is sown in
- Max Planck (transl. M. Martius) The Theory of Heat Radiation (1914) [[pdf](https://www.gutenberg.org/files/40030/40030-pdf.pdf)]
with the recognition of a quantum of “action”: Planck's constant (p. 164)
Quantum mechanics as such originates with:
-
Werner Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik 33 (1925) 879–893 [[doi:10.1007/BF01328377]( https://doi.org/10.1007/BF01328377), Engl. pdf]
-
Max Born, Pascual Jordan, Zur Quantenmechanik, Zeitschrift für Physik 34 (1925) 858–888 [[doi:10.1007/BF01328531](https://doi.org/10.1007/BF01328531)]
-
Paul A. M. Dirac, On the theory of quantum mechanics, Proceedings of the Royal Society 112 762 (1926) [[doi:10.1098/rspa.1926.0133](https://doi.org/10.1098/rspa.1926.0133)]
-
Paul A. M. Dirac, The physical interpretation of the quantum dynamics, Proceedings of the Royal Society of London 113 765 (1927) [[doi:10.1098/rspa.1927.0012](https://doi.org/10.1098/rspa.1927.0012)]
-
David Hilbert, John von Neumann, Lothar W. Nordheim, Über die Grundlagen der Quantenmechanik, Math. Ann. 98 (1928) 1–30 [[doi:10.1007/BF01451579](https://doi.org/10.1007/BF01451579)]
Formulating the Born rule:
-
Max Born, Zur Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik 37 (1926) 863–867 [[doi:10.1007/BF01397477](https://doi.org/10.1007/BF01397477)]
-
Max Born, Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik 38 (1926) 803–827 [[doi:10.1007/BF01397184](https://doi.org/10.1007/BF01397184)]
-
Max Born, Das Adiabatenprinzip in der Quantenmechanik, Zeitschrift für Physik 40 (1927) 167–192 [[doi:10.1007/BF01400360](https://doi.org/10.1007/BF01400360)]
-
Pascual Jordan, Über eine neue Begründung der Quantenmechanik, Zeitschrift für Physik 40 (1927) 809–838 [[doi:10.1007/BF01390903](https://doi.org/10.1007/BF01390903)]
Introducing the Hilbert space-formulation (and the projection postulate):
-
Von Neumann’s 1927 Trilogy on the Foundations of Quantum Mechanics (annotated translations by Anthony Duncan) [[arXiv:2406.02149](https://arxiv.org/abs/2406.02149)]
-
Mathematische Grundlagen der Quantenmechanik, Springer (1932, 1971) [[doi:10.1007/978-3-642-96048-2](https://link.springer.com/book/10.1007/978-3-642-96048-2)]
Mathematical Foundations of Quantum Mechanics Princeton University Press (1955) [[doi:10.1515/9781400889921](https://doi.org/10.1515/9781400889921), Wikipedia entry]
but see (on von Neumann’s further reasoning regarding quantum logic and then of von Neumann algebra factors):
- Miklos Rédei, Why John von Neumann did not Like the Hilbert Space formalism of quantum mechanics (and what he liked instead), Studies in History and Philosophy of Modern Physics 27 4 (1996) 493-510 []
Equivalence of the Heisenberg picture and the Schrödinger picture:
-
Erwin Schrödinger, Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen, Annalen der Physil 384 8 (1926) 734-756 [[doi:10.1002/andp.19263840804]( https://doi.org/10.1002/andp.19263840804)]
-
Carl Eckart, Operator Calculus and the Solution of the Equations of Quantum Dynamics, Phys. Rev. 28 4 (1926) 711-726 [[doi:10.1103/PhysRev.28.711](https://doi.org/10.1103/PhysRev.28.711)]
Introducing the tool of group theory to quantum physics (cf. Gruppenpest):
-
Hermann Weyl, Quantenmechanik und Gruppentheorie, Zeitschrift für Physik 46 (1927) 1–46 [[doi:10.1007/BF02055756](https://doi.org/10.1007/BF02055756)]
-
Hermann Weyl, Gruppentheorie und Quantenmechanik, S. Hirzel, Leipzig, (1931), translated by H. P. Robertson: The Theory of Groups and Quantum Mechanics Dover (1950) [[ISBN:0486602699](https://store.doverpublications.com/0486602699.html), ark:/13960/t1kh1w36w]
-
Eugene P. Wigner: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Springer (1931) [[doi:10.1007/978-3-663-02555-9](https://doi.org/10.1007/978-3-663-02555-9), pdf]
-
Eugene P. Wigner: Group theory: And its application to the quantum mechanics of atomic spectra, 5, Academic Press (1959) [[doi:978-0-12-750550-3](https://www.elsevier.com/books/group-theory/wigner/978-0-12-750550-3)]
Early discussion of composite quantum systems and their quantum entanglement:
- Erwin Schrödinger, Discussion of Probability Relations between Separated Systems, Mathematical Proceedings of the Cambridge Philosophical Society, 31 4 (1935) 555-563 [[doi:10.1017/S0305004100013554](https://doi.org/10.1017/S0305004100013554)]
On the historical orogin of the canonical commutation relations:
- Severino C. Coutinho, The Many Avatars of a Simple Algebra, The American Mathematical Monthly 104 7 (1997) 593-604 [[doi:10.2307/2975052](https://doi.org/10.2307/2975052), jstor:2975052]
General
Classical textbook accounts:
-
Paul Dirac, The Principles of Quantum Mechanics, International series of monographs on physics, Oxford University Press (1930, 1935, 1947) [[ISBN:9780198520115](https://global.oup.com/academic/product/the-principles-of-quantum-mechanics-9780198520115)]
-
George Mackey, The Mathematical Foundations of Quantum Mechanics: a Lecture-note Volume, Mathematical physics monograph series, Benjamin (1963), Dover (2004) [[google books](https://books.google.de/books?id=qlpb2mWYmfYC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)]
(including an influential proposal for quantum logic)
-
James D. Bjorken, Sidney D. Drell: Relativistic Quantum Mechanics, McGrawHill (1964) [[ark:/13960/t5fc2v05h](https://archive.org/details/relativisticquan0000bjor/page/n1/mode/2up), pdf, pdf]
(focus on relativistic particles: Klein-Gordon equation, Dirac equation towards perturbative quantum field theory)
-
Eduard Prugovecki, Quantum mechanics in Hilbert Space. Academic Press (1971) [[ISBN: 9780080874081](https://www.elsevier.com/books/quantum-mechanics-in-hilbert-space/prugovecki/978-0-12-566060-0)]
-
Erhard Scheibe, The logical analysis of quantum mechanics, Pergamon Press Oxford (1973)
(focus on the interpretation of quantum mechanics)
-
Ola Bratteli, Derek W. Robinson, Operator Algebras and Quantum Statistical Mechanics – vol 1: C *C^\ast- and W *W^\ast-Algebras. Symmetry Groups. Decomposition of States., Springer (1979, 1987, 2002) [[doi:10.1007/978-3-662-02520-8](https://doi.org/10.1007/978-3-662-02520-8)]
-
James Glimm, Arthur Jaffe, Quantum physics: a functional integral point of view, Springer (1981, 1987) [[doi:10.1007/978-1-4612-4728-9](https://doi.org/10.1007/978-1-4612-4728-9)]
(focus on the path integral in constructive quantum field theory)
-
Hans Primas, Chemistry, Quantum Mechanics and Reductionism, Springer (1983) [[doi:10.1007/978-3-642-69365-6](https://doi.org/10.1007/978-3-642-69365-6)]
(with an eye towards quantum chemistry and interpretation of quantum mechanics)
-
Anthony Sudbery, Quantum mechanics and the particles of nature: an outline for mathematicians, Cambridge University Press (1986) [[pdf](http://users.uoa.gr/~navidcon/sudbery.pdf), spire:240835]
-
Karl Kraus, States, Effects, and Operations – Fundamental Notions of Quantum Theory, Lecture Notes in Physics 190 Springer (1983) [[doi:10.1007/3-540-12732-1](https://doi.org/10.1007/3-540-12732-1)]
(emphasis on effect algebras and quantum operations)
-
Jun John Sakurai, Jim Napolitano, Modern Quantum Mechanics, Cambridge University Press (1985, 2020) [[doi:10.1017/9781108587280](https://doi.org/10.1017/9781108587280), Wikipedia]
More recent textbook accounts:
-
Paul Busch, Marian Grabowski, Pekka J. Lahti, Operational Quantum Physics, Lecture Notes in Physics Monographs 31, Springer (1995) [[doi:10.1007/978-3-540-49239-9](https://doi.org/10.1007/978-3-540-49239-9)]
(perspective of quantum probability theory via POVMs)
-
Chris Isham, Lectures on Quantum Theory – Mathematical and Structural Foundations, World Scientific (1995) [[doi:10.1142/p001](https://doi.org/10.1142/p001), ark:/13960/t4xh7cs99]
-
Klaas Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer (1998) [[doi:10.1007/978-1-4612-1680-3](https://doi.org/10.1007/978-1-4612-1680-3)]
-
Robert B. Griffiths, Consistent Quantum Theory, Cambridge University Press (2002) [[doi:10.1017/CBO9780511606052](https://doi.org/10.1017/CBO9780511606052), webpage]
-
Mikio Nakahara, Chapter 1 of: Geometry, Topology and Physics, IOP (2003) [[doi:10.1201/9781315275826](https://doi.org/10.1201/9781315275826), pdf]
-
Serge Haroche, Jean-Michel Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press (2006) [[doi:10.1093/acprof:oso/9780198509141.001.0001](https://doi.org/10.1093/acprof:oso/9780198509141.001.0001)]
-
Ingemar Bengtsson, Karol Życzkowski, Geometry of Quantum States — An Introduction to Quantum Entanglement, Cambridge University Press (2006) [[doi:10.1017/CBO9780511535048](https://doi.org/10.1017/CBO9780511535048)]
(focus on the geometry of quantum state spaces and culminating in a chapter on quantum entanglement)
-
Heinz-Peter Breuer, Francesco Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2007) [[doi:10.1093/acprof:oso/9780199213900.001.0001](https://doi.org/10.1093/acprof:oso/9780199213900.001.0001)]
(focus on open quantum systems)
-
Teiko Heinosaari, Mário Ziman, The Mathematical Language of Quantum Theory – From Uncertainty to Entanglement, Cambridge University Press (2011) [[doi:10.1017/CBO9781139031103]( https://doi.org/10.1017/CBO9781139031103)]
-
Nik Weaver, Mathematical Quantization, Routledge (2011) [[ISBN 9781584880011](https://www.routledge.com/Mathematical-Quantization/Weaver/p/book/9781584880011)]
-
Thomas L. Curtright, David B. Fairlie, Cosmas K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space, World Scientific (2014) [[doi:10.1142/8870](https://doi.org/10.1142/8870)]
(in Weyl quantization)
-
Paul Busch, Pekka J. Lahti, Juha-Pekka Pellonpää, Kari Ylinen, Quantum Measurement, Springer (2016) [[doi:10.1007/978-3-319-43389-9](https://doi.org/10.1007/978-3-319-43389-9)]
(perspective of quantum probability via POVMs)
-
Klaas Landsman, Foundations of quantum theory – From classical concepts to Operator algebras, Springer Open (2017) [[doi:10.1007/978-3-319-51777-3](https://link.springer.com/book/10.1007/978-3-319-51777-3), pdf]
With a focus on the relationship between quantum mechanics and representation theory
-
Peter Woit, Quantum Theory, Groups and Representations: An Introduction, Springer (2017) [[doi:10.1007/978-3-319-64612-1](https://doi.org/10.1007/978-3-319-64612-1), ISBN:978-3-319-64610-7]
On the interpretation of quantum mechanics:
- Roland Omnès, The Interpretation of Quantum Mechanics, Princeton University Press (1994) [[ISBN:9780691036694](http://press.princeton.edu/titles/5525.html)]
Lecture notes:
-
Robert Geroch, Geometrical Quantum Mechanics, University of Chicago (1974) [[pdf](http://strangebeautiful.com/other-texts/geroch-geom-qm.pdf), pdf]
-
Uni Bonn, Lecture scripts and Online courses – Quantum mechanics
-
Valter Moretti, Mathematical Foundations of Quantum Mechanics: An Advanced Short Course, Int. J. Geom. Methods Mod. Phys. 13 Supp. 1 (2016) 1630011 [[arXiv:1508.06951](http://arxiv.org/abs/1508.06951), doi:10.1142/S0219887816300117]
-
Greg Kuperberg, A concise introduction to quantum probability, quantum mechanics, and quantum computation (2005) [[pdf](http://www.math.ucdavis.edu/~greg/intro-2005.pdf), pdf]
(with an eye towards quantum probability and quantum computation)
-
Stéphane Attal, Quantum Mechanics, Lecture 5 in: Lectures on Quantum Noises [[pdf](http://math.univ-lyon1.fr/~attal/Quantum_Mechanics.pdf), webpage]
(with an eye towards quantum probability and quantum noise)
Further references:
-
Sean Bates, Alan Weinstein, Lectures on the geometry of quantization AMS (1997) [[pdf](http://www.math.berkeley.edu/~alanw/GofQ.pdf)]
-
Pierre Cartier, Cécile DeWitt-Morette, Functional integration: action and symmetries, Cambridge Monographs on Mathematical Physics (2006) [[ISBN:9780521143578](https://www.cambridge.org/ae/academic/subjects/physics/theoretical-physics-and-mathematical-physics/functional-integration-action-and-symmetries?format=PB#contentsTabAnchor)]
(on rigorous path integrals)
-
Leon A. Takhtajan: Quantum mechanics for mathematicians, Amer. Math. Soc. (2008) [[ISBN:978-0-8218-4630-8](https://bookstore.ams.org/gsm-95)]
-
Michael Movshev, Concepts of Quantum Mechanics (2008) [[web](http://www.math.sunysb.edu/~mmovshev/MAT570Spring2008/syllabusfinal.html)]
-
Franco Strocchi, An introduction to the mathematical structure of quantum mechanics, Advanced Series in Mathematical Physics 28, World Scientific (2008) [[doi:10.1142/7038](https://doi.org/10.1142/7038)]
-
Steven Weinberg, Lectures on Quantum Mechanics, Cambridge University Press (2015) [[doi:10.1017/CBO9781316276105](https://doi.org/10.1017/CBO9781316276105)]
-
Valter Moretti, Spectral Theory and Quantum Mechanics – Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation, Springer (2017) [[doi:10.1007/978-3-319-70706-8](https://doi.org/10.1007/978-3-319-70706-8)]
-
Valter Moretti, Fundamental Mathematical Structures of Quantum Theory – Spectral Theory, Foundational Issues, Symmetries, Algebraic Formulation, Springer (2020) [[doi:10.1007/978-3-030-18346-2](https://doi.org/10.1007/978-3-030-18346-2)]
-
Jan Perina, Z. Hradil, Branislav Jurčo, Quantum optics and fundamentals of physics, Kluwer 1994
Introduction to mathematical foundations of quantum physics in quantum probability, operator algebra:
-
Jonathan Gleason, The C *C^*-algebraic formalism of quantum mechanics (2009) [pdf, pdf]
-
Jonathan Gleason, From Classical to Quantum: The F *F^\ast-Algebraic Approach, contribution to VIGRE REU 2011, Chicago (2011) [[pdf](https://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Gleason.pdf), pdf]
-
Jürg Fröhlich, B. Schubnel, Quantum Probability Theory and the Foundations of Quantum Mechanics. In: Blanchard P., Fröhlich J. (eds.) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer 2015 (arXiv:1310.1484, doi:10.1007/978-3-662-46422-9_7)
-
Jürg Fröhlich, The structure of quantum theory, Chapter 6 in The quest for laws and structure, EMS 2016 (doi, doi:10.4171/164-1/8).
-
Klaas Landsman, Foundations of quantum theory – From classical concepts to Operator algebras, Springer Open 2017 (pdf)
see also
- Lucien Hardy, Quantum Theory From Five Reasonable Axioms (arXiv:quant-ph/0101012)
Generalization of the algebraic perspective to quantum field theory is discussed in
for more on this see at AQFT and at perturbative AQFT
Different incarnations of this C*-algebraic locality condition are discussed in section 3 of
- Sander Wolters, Quantum toposophy,
relating it to the topos-theoretic formulation in
Aspects of quantum mechanics in category theory and topos theory are discussed in
- Hans Halvorson (ed.) Deep Beauty – Understanding the quantum world through mathematical innovation Cambridge (2011) (pdf)
This discusses for instance higher category theory and physics and the Bohr topos of a quantum system.
Quantum observable algebras as Groupoid algebras
The original derivation of the Heisenberg picture of quantum mechanics, introducing N×NN \times N matrix algebra for transitions between NN measurable states of atomic spectra, by
- Werner Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik 33 (1925) 879–893 [doi:10.1007/BF01328377, Engl. pdf]
was argued by
- Alain Connes, pp 43-44 of: Noncommutative geometry, Academic Press (1994) [ISBN:9780121858605, pdf]
to be fruitfully understood as the groupoid convolution algebra of the pair groupoid of transitions between NN elements.
Later but more generally, the “algebra of (selective) measurement” originally envision by
-
Julian Schwinger: Quantum Kinematics and Dynamics, CRC Press (1969, 1991) [[ISBN:9780738203034](https://www.routledge.com/Quantum-Kinematics-And-Dynamic/Schwinger/p/book/9780738203034?srsltid=AfmBOopc1mHvjXy-9P4osTWSNmgMcshwipyqnBSRWr9wbFOAe380eo8h), pdf]
-
Julian Schwinger (ed.: Berthold-Georg Englert): Quantum Mechanics – Symbolism of Atomic Measurements, Springer (2001) [[doi:10.1007/978-3-662-04589-3](https://doi.org/10.1007/978-3-662-04589-3)]
is argued to be, in modern language, the groupoid convolution algebras of groupoids whose morphisms reflect transitions between possible quantum measurement-outcomes – by:
-
Florio M. Ciaglia, Alberto Ibort, Giuseppe Marmo: Schwinger’s Picture of Quantum Mechanics I: Groupoids, Int. J. Geometric Methods in Modern Physics 16 08 (2019) 1950119 [doi:10.1142/S0219887819501196, arXiv:1905.12274]
-
Florio M. Ciaglia, Alberto Ibort, Giuseppe Marmo: Schwinger’s Picture of Quantum Mechanics II: Algebras and Observables, Int. J. Geometric Methods in Modern Physics 16 09 (2019) 1950136 [doi:10.1142/S0219887819501366, arXiv:1907.03883]
-
Florio M. Ciaglia, Alberto Ibort, Giuseppe Marmo: Schwinger’s Picture of Quantum Mechanics II: Algebras and Observables, Int. J. Geometric Methods in Modern Physics 16 11 (2019) 1950165 [doi:10.1142/S0219887819501652, arXiv:1909.07265]
-
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo: Schwinger’s Picture of Quantum Mechanics IV: Composition and independence, Int. J. Geometric Methods in Modern Physics 17 04 (2020) 2050058 [doi:10.1142/S0219887820500589, arXiv:2004.02472]
-
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo: Schwinger’s picture of Quantum Mechanics, Int. J. Geometric Methods in Modern Physics 17 04 (2020) 2050054 [doi:10.1142/S0219887820500541, arXiv:2002.09326]
and as such further developed in:
-
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo: Schrödinger’s problem with cats: measurements and states in the Groupoid Picture of Quantum Mechanics, Entropy 22 11 (2020) [doi:10.3390/e22111292, arXiv:2012.10284]
-
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone: Schwinger’s picture of quantum mechanics: 2-groupoids and symmetries, Journal of Geometric Mechanics 13 3 (2021) [doi:10.3934/jgm.2021008, arXiv:2104.13880]
-
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo: Quantum Tomography and Schwinger’s Picture of Quantum Mechanics, Journal of Physics A: Mathematics and Theoretical 55 27 (2022) [doi:10.1088/1751-8121/ac7591, arXiv:2205.00170]
-
Florio M. Ciaglia, Fabio Di Cosmo, Paolo Facchi, Alberto Ibort, Arturo Konderak, Giuseppe Marmo: Groupoid and algebra of the infinite quantum spin chain, Journal of Geometry and Physics 191 (2023) [doi:10.1016/j.geomphys.2023.104901, arXiv:2302.01050],
Proof that non-perturbative quantum observables on Yang-Mill fluxes through a surface form a convolution algebra:
- Hisham Sati, Urs Schreiber, Thm 1 in: Quantum Observables of Quantized Fluxes, Annales Henri Poincaré (2024) [doi:10.1007/s00023-024-01517-z, arXiv:2312.13037]
Quantum information theory via String diagrams
General
The observation that a natural language for quantum information theory and quantum computation, specifically for quantum circuit diagrams, is that of string diagrams in †-compact categories (see quantum information theory via dagger-compact categories):
-
Samson Abramsky, Bob Coecke, A categorical semantics of quantum protocols, Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer Science Press (2004) [[arXiv:quant-ph/0402130, doi:10.1109/LICS.2004.1319636]]
-
Samson Abramsky, Bob Coecke, Abstract Physical Traces, Theory and Applications of Categories, 14 6 (2005) 111-124. [tac:14-06, arXiv:0910.3144]
-
Samson Abramsky, Bob Coecke, Categorical quantum mechanics, in Handbook of Quantum Logic and Quantum Structures, Elsevier (2008) [[arXiv:0808.1023, ISBN:9780080931661, doi:10.1109/LICS.2004.1319636]]
-
Bob Coecke, De-linearizing Linearity: Projective Quantum Axiomatics from Strong Compact Closure, Proceedings of the 3rd International Workshop on Quantum Programming Languages (2005), Electronic Notes in Theoretical Computer Science 170 (2007) 49-72 [doi:10.1016/j.entcs.2006.12.011, arXiv:quant-ph/0506134]
On the relation to quantum logic/linear logic:
-
Samson Abramsky, Ross Duncan, A Categorical Quantum Logic, Mathematical Structures in Computer Science 16 3 (2006) [[arXiv:quant-ph/0512114, doi:10.1017/S0960129506005275]]
-
Ross Duncan, Types for quantum mechanics, 2006 [[pdf, slides]]
Early exposition with introduction to monoidal category theory:
-
Bob Coecke, Kindergarten quantum mechanics [[arXiv:quant-ph/0510032]]
-
Bob Coecke, Introducing categories to the practicing physicist [[arXiv:0808.1032]]
-
John Baez, Mike Stay, Physics, topology, logic and computation: a rosetta stone in: New Structures for Physics, Bob Coecke (ed.), Lecture Notes in Physics 813, Springer (2011) 95-174 [[arxiv/0903.0340]]
-
Bob Coecke, Eric Oliver Paquette, Categories for the practising physicist, in: New Structures for Physics, Lecture Notes in Physics 813, Springer (2010) [[arXiv:0905.3010, doi:10.1007/978-3-642-12821-9_3]]
-
Bob Coecke, Quantum Picturalism, Contemporary Physics 51 1 (2010) [[arXiv:0908.1787, doi:10.1080/00107510903257624]]
Review in contrast to quantum logic:
- Samson Abramsky, Bob Coecke, Physics from Computer Science: a Position Statement, International Journal of Unconventional Computing 3 3 (2007) [[pdf, ijuc-3-3-p-179-197]]
and with emphasis on quantum computation:
- Jamie Vicary, The Topology of Quantum Algorithms, (LICS 2013) Proceedings of 28th Annual ACM/IEEE Symposium on Logic in Computer Science (2013) 93-102 [[arXiv:1209.3917, doi:10.1109/LICS.2013.14]]
Generalization to quantum operations on mixed states (completely positive maps of density matrices):
-
Peter Selinger, Dagger compact closed categories and completely positive maps, Electronic Notes in Theoretical Computer Science 170 (2007) 139-163 [[doi:10.1016/j.entcs.2006.12.018, web, pdf]]
-
Bob Coecke, Chris Heunen, Pictures of complete positivity in arbitrary dimension, Information and Computation 250 50-58 (2016) [[arXiv:1110.3055, doi:10.1016/j.ic.2016.02.007]]
-
Bob Coecke, Chris Heunen, Aleks Kissinger, Categories of Quantum and Classical Channels, EPTCS 158 (2014) 1-14 [[arXiv:1408.0049, doi:10.4204/EPTCS.158.1]]
Textbook accounts (with background on relevant monoidal category theory):
-
Bob Coecke, Aleks Kissinger, Picturing Quantum Processes – A First Course in Quantum Theory and Diagrammatic Reasoning, Cambridge University Press (2017) [[ISBN:9781107104228]]
-
Chris Heunen, Jamie Vicary: Categories for Quantum Theory, Oxford University Press (2019) [ISBN:9780198739616]
based on:
Chris Heunen, Jamie Vicary, Lectures on categorical quantum mechanics (2012) [pdf, pdf]
-
Bob Coecke, Stefano Gogioso, Quantum in Pictures, Quantinuum Publications (2023) [[ISBN 978-1739214715, Quantinuum blog]]
(focus on ZX-calculus)
Measurement & Classical structures
Formalization of quantum measurement via Frobenius algebra-structures (“classical structures”):
-
Bob Coecke, Duško Pavlović, Quantum measurements without sums, in Louis Kauffman, Samuel Lomonaco (eds.), Mathematics of Quantum Computation and Quantum Technology, Taylor & Francis (2008) 559-596 [[arXiv:quant-ph/0608035, doi:10.1201/9781584889007]]
-
Bob Coecke, Eric Oliver Paquette, POVMs and Naimark’s theorem without sums, Electronic Notes in Theoretical Computer Science 210 (2008) 15-31 [[arXiv:quant-ph/0608072, doi:10.1016/j.entcs.2008.04.015]]
-
Bob Coecke, Eric Oliver Paquette, Duško Pavlović, Classical and quantum structuralism, in: Semantic Techniques in Quantum Computation, Cambridge University Press (2009) 29-69 [[arXiv:0904.1997, doi:10.1017/CBO9781139193313.003]]
-
Bob Coecke, Duško Pavlović, Jamie Vicary, A new description of orthogonal bases, Mathematical Structures in Computer Science 23 3 (2012) 555- 567 [[arXiv:0810.0812, doi:10.1017/S0960129512000047]]
and the evolution of the “classical structures”-monad into the “spider”-diagrams (terminology for special Frobenius normal form, originating in Coecke & Paquette 2008, p. 6, Coecke & Duncan 2008, Thm. 1) of the ZX-calculus:
-
Bob Coecke, Ross Duncan, §3 in: Interacting Quantum Observables, in Automata, Languages and Programming. ICALP 2008, Lecture Notes in Computer Science 5126, Springer (2008) [[doi:10.1007/978-3-540-70583-3_25]]
-
Aleks Kissinger, §§2 in: Graph Rewrite Systems for Classical Structures in †\dagger-Symmetric Monoidal Categories, MSc thesis, Oxford (2008) [[pdf, pdf]]
-
Aleks Kissinger, §4 in: Exploring a Quantum Theory with Graph Rewriting and Computer Algebra, in: Intelligent Computer Mathematics. CICM 2009, Lecture Notes in Computer Science 5625 (2009) 90-105 [[doi:10.1007/978-3-642-02614-0_12]]
-
Bob Coecke, Ross Duncan, Def. 6.4 in: Interacting Quantum Observables: Categorical Algebra and Diagrammatics, New J. Phys. 13 (2011) 043016 [[arXiv:0906.4725, doi:10.1088/1367-2630/13/4/043016]]
ZX-Calculus
Evolution of the “classical structures”-Frobenius algebra (above) into the “spider”-ingredient of the ZX-calculus for specific control of quantum circuit-diagrams:
-
Bob Coecke, Ross Duncan, §3 in: Interacting Quantum Observables, in Automata, Languages and Programming. ICALP 2008, Lecture Notes in Computer Science 5126, Springer (2008) [[doi:10.1007/978-3-540-70583-3_25]]
-
Aleks Kissinger, Graph Rewrite Systems for Classical Structures in †\dagger-Symmetric Monoidal Categories, MSc thesis, Oxford (2008) [[pdf, pdf]]
-
Aleks Kissinger, Exploring a Quantum Theory with Graph Rewriting and Computer Algebra, in: Intelligent Computer Mathematics. CICM 2009, Lecture Notes in Computer Science 5625 (2009) 90-105 [[doi:10.1007/978-3-642-02614-0_12]]
-
Bob Coecke, Ross Duncan, Interacting Quantum Observables: Categorical Algebra and Diagrammatics, New J. Phys. 13 (2011) 043016 [[arXiv:0906.4725, doi:10.1088/1367-2630/13/4/043016]]
Relating the ZX-calculus to braided fusion categories for anyon braiding:
- Fatimah Rita Ahmadi, Aleks Kissinger, Topological Quantum Computation Through the Lens of Categorical Quantum Mechanics [[arXiv:2211.03855]]
Last revised on February 28, 2025 at 15:14:01. See the history of this page for a list of all contributions to it.