special holonomy (changes) in nLab
Showing changes from revision #18 to #19: Added | Removed | Changed
Context
Differential geometry
synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
-
(shape modality ⊣\dashv flat modality ⊣\dashv sharp modality)
(esh⊣♭⊣♯)(\esh \dashv \flat \dashv \sharp )
-
dR-shape modality ⊣\dashv dR-flat modality
esh dR⊣♭ dR\esh_{dR} \dashv \flat_{dR}
-
(reduction modality ⊣\dashv infinitesimal shape modality ⊣\dashv infinitesimal flat modality)
(ℜ⊣ℑ⊣&)(\Re \dashv \Im \dashv \&)
-
fermionic modality ⊣\dashv bosonic modality ⊣\dashv rheonomy modality
(⇉⊣⇝⊣Rh)(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)
id ⊣ id ∨ ∨ fermionic ⇉ ⊣ ⇝ bosonic ⊥ ⊥ bosonic ⇝ ⊣ Rh rheonomic ∨ ∨ reduced ℜ ⊣ ℑ infinitesimal ⊥ ⊥ infinitesimal ℑ ⊣ & étale ∨ ∨ cohesive esh ⊣ ♭ discrete ⊥ ⊥ discrete ♭ ⊣ ♯ continuous ∨ ∨ ∅ ⊣ * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }
Models
-
Models for Smooth Infinitesimal Analysis
-
smooth algebra (C ∞C^\infty-ring)
-
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
Differential cohomology
Ingredients
Connections on bundles
Higher abelian differential cohomology
Higher nonabelian differential cohomology
Fiber integration
Application to gauge theory
Contents
Idea
For XX a space equipped with a GG-connection on a bundle ∇\nabla (for some Lie group GG) and for x∈Xx \in X any point, the parallel transport of ∇\nabla assigns to each curve γ:S 1→X\gamma : S^1 \to X in XX starting and ending at xx an element hol ∇(γ)∈G hol_\nabla(\gamma) \in G: the holonomy of ∇\nabla along that curve.
The holonomy group of ∇\nabla at xx is the subgroup of GG on these elements.
If ∇\nabla is the Levi-Civita connection on a Riemannian manifold and the holonomy group is a proper subgroup HH of the special orthogonal group, one says that (X,g)(X,g) is a manifold of special holonomy .
Properties
Classification
Berger's theorem says that if a manifold XX is
-
neither locally a product nor a symmetric space
then the possible special holonomy groups are the following
classification of special holonomy manifolds by Berger's theorem:
\,G-structure\, | \,special holonomy\, | \,dimension\, | \,preserved differential form\, | |
---|---|---|---|---|
ℂ\,\mathbb{C}\, | \,Kähler manifold\, | \,U(n)\, | 2n\,2n\, | \,Kähler forms ω 2\omega_2\, |
\,Calabi-Yau manifold\, | \,SU(n)\, | 2n\,2n\, | ||
ℍ\,\mathbb{H}\, | \,quaternionic Kähler manifold\, | \,Sp(n).Sp(1)\, | 4n\,4n\, | ω 4=ω 1∧ω 1+ω 2∧ω 2+ω 3∧ω 3\,\omega_4 = \omega_1\wedge \omega_1+ \omega_2\wedge \omega_2 + \omega_3\wedge \omega_3\, |
\,hyper-Kähler manifold\, | \,Sp(n)\, | 4n\,4n\, | ω=aω 2 (1)+bω 2 (2)+cω 2 (3)\,\omega = a \omega^{(1)}_2+ b \omega^{(2)}_2 + c \omega^{(3)}_2\, (a 2+b 2+c 2=1a^2 + b^2 + c^2 = 1) | |
𝕆\,\mathbb{O}\, | \,Spin(7) manifold\, | \,Spin(7)\, | \,8\, | \,Cayley form\, |
\,G₂ manifold\, | \,G₂\, | 7\,7\, | \,associative 3-form\, |
Relation to GG-reductions
A manifold having special holonomy means that there is a corresponding reduction of structure groups.
This appears as ( Joyce 2000, prop. 3.1.8 ) .
Via 𝕆\mathbb{O}-Riemannian manifolds
\;normed division algebra\; | 𝔸\;\mathbb{A}\; | \;Riemannian 𝔸\mathbb{A}-manifolds\; | \;special Riemannian 𝔸\mathbb{A}-manifolds\; |
---|---|---|---|
\;real numbers\; | ℝ\;\mathbb{R}\; | \;Riemannian manifold\; | \;oriented Riemannian manifold\; |
\;complex numbers\; | ℂ\;\mathbb{C}\; | \;Kähler manifold\; | \;Calabi-Yau manifold\; |
\;quaternions\; | ℍ\;\mathbb{H}\; | \;quaternion-Kähler manifold\; | \;hyperkähler manifold\; |
\;octonions\; | 𝕆\;\mathbb{O}\; | \;Spin(7)-manifold\; | \;G₂-manifold\; |
(Leung 02)
-
-
special holonomy, reduction of structure groups, G-structure, exceptional geometry, Walker coordinates
References
General
The classification in expressed byBerger's theorem is due to to:
- Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955)
For more see see:
-
Simon Salamon, Riemannian Geometry and Holonomy Groups, Research Notes in Mathematics 201, Longman (1989)
-
Nigel Hitchin, Special holonomy and beyond, Clay Mathematics Proceedings (pdf)
-
Dominic Joyce, Compact manifolds with special holonomy , Oxford Mathematical Monographs (2000) [[ISBN:9780198506010](https://global.oup.com/academic/product/compact-manifolds-with-special-holonomy-9780198506010?cc=us&lang=en&)]
-
Luis J. Boya, Special holonomy manifolds in physics Monografías de la Real Academia de Ciencias de Zaragoza. 29: 37–47, (2006). (pdf)
Discussion of the relation to Killing spinors includes
- Andrei Moroianu, Uwe Semmelmann, Parallel spinors and holonomy groups, Journal of Mathematical Physics 41 (2000), 2395-2402 (arXiv:math/9903062)
Discussion in terms of Riemannian geometry modeled on normed division algebras is in
- Naichung Conan Leung, Riemannian geometry over different normed division algebras, J. Diff. Geom. 61:2 (2002) 289–333(euclid)
See also
- Hans Freudenthal, Lie groups in the foundations of geometry, Advances in Mathematics, 1 (1965) 145–190 (dspace)
On special holonomy orbifolds:
- Jeff Cheeger, Gang Tian, Anti-self-duality of curvature and degeneration of metrics with special holonomy, Commun. Math. Phys. 255, 391–417 (2005) (doi:10.1007/s00220-004-1279-0)
In supergravity and string theory
Discussion of special holonomy manifolds in supergravity and superstring theory as fiber-spaces for KK-compactifications preserving some number of supersymmetries:
- Steven Gubser, Special holonomy in string theory and M-theory, In Steven Gubser, Joseph Lykken (eds.) Strings, Branes and Extra Dimensions - TASI 2001, World Scientific 2004 (arXiv:hep-th/0201114, doi:10.1142/5495)
Last revised on May 4, 2024 at 13:45:50. See the history of this page for a list of all contributions to it.