topological complexity (changes) in nLab
of the path space PXP X.
It is also possible to define it using the Schwarz genus? of the path space fibration ΩX↪PX→X\Omega X\hookrightarrow P X\rightarrow X.
There is also the convention of using the smallest number nn, so that an open cover (U k) k=0 n(U_k)_{k=0}^n of n+1n+1 open sets of X×XX\times X with the above property exists. This lowers all topological complexities by one, hence the convention used can be given by giving the topological complexity of the set with one point. (TC(*)=1TC(*)=1 for the upper convention and TC(*)=0TC(*)=0 for the lower convention.)
Properties
\begin{proposition} A topological space XX is contractible iff TC(X)=1TC(X)=1. \end{proposition}
\begin{proposition} The topological complexity is only dependent on the homotopy type of a topological space. \end{proposition}
Special topological complexities
Spheres and tori
\begin{proposition} The topological complexity of a sphere is
(1)TC(S n)={2 nodd 3 neven TC \big( S^n \big) \;=\; \left\{ \begin{array}{ll} 2 & n \; odd \\ 3 & n \; even \end{array} \right.
(with convention TC(*)=1\operatorname{TC}(*)=1) \end{proposition}
This theorem can be generalized:
\begin{proposition} The topological complexity of a product of spheres is
(2)TC((S m) n)={n+1 modd 2n+1 meven TC \big( (S^m)^n \big) \;=\; \left\{ \begin{array}{ll} n+1 & m \; odd \\ 2n+1 & m \; even \end{array} \right.
(with convention TC(*)=1\operatorname{TC}(*)=1). \end{proposition}
A special case of this proposition is TC(T n)=n+1TC(T^n)=n+1 for the topological complexity of the torus.
Real and complex projective space
\begin{proposition} For n≠1,3,7n\neq 1,3,7, the smallest natural number k∈ℕk\in\mathbb{N}, so that there exists an immersion of real projective space ℝP n\mathbb{R}P^n into euclidean space ℝ k−1\mathbb{R}^{k-1} is the topologial complexity TC(ℝP n)\operatorname{TC}(\mathbb{R}P^n) (with convention TC(*)=1\operatorname{TC}(*)=1). \end{proposition}
(Farber & Tabachnikov & Yuzvinsky 02, Theorem 12)
\begin{proposition} For n=1,3,7n=1,3,7, one has TC(ℝP n)=n+1\operatorname{TC}(\mathbb{R}P^n)=n+1 (with convention TC(*)=1\operatorname{TC}(*)=1). \end{proposition}
(Farber & Tabachnikov & Yuzvinsky 02, Proposition 18)
\begin{proposition} For any n∈ℕn\in\mathbb{N}, one has TC(ℂP n)=2n+1\operatorname{TC}(\mathbb{C}P^n)=2n+1 (with convention TC(*)=1\operatorname{TC}(*)=1). \end{proposition}
(Farber & Tabachnikov & Yuzvinsky 02, Corollary 2)
Σ\Sigma and Ξ\Xi surfaces
\begin{proposition} The topological complexity of a Σ\Sigma surface is
(3)TC(Σ g)={3 m≤1 5 m>1 TC \big( \Sigma_g \big) \;=\; \left\{ \begin{array}{ll} 3 & m \leq 1 \\ 5 & m \gt 1 \end{array} \right.
(with convention TC(*)=1TC(*)=1) \end{proposition}
\begin{proposition} For n≥2n \geq 2 and g≥2g \geq 2 one has
(4)TC((ℝP n) g)=2n TC \big( (\mathbb{R}P^n)^g \big) \;=\; 2n
for the connected sum of real projective space (with convention TC(*)=0TC(*)=0). \end{proposition}
(Cohen & Vandembrouq 18, Theorem 1.3.)
Klein bottle
\begin{proposition} The topological complexity of the Klein bottle is 44 (with convention TC(*)=0TC(*)=0). \end{proposition}
(Cohen & Vandembrouq 16, Theorem 1)
Configuration space
\begin{proposition} The topological complexity of a configuration space is
(5)TC(Conf(ℝ m,n))={2n−1 modd 2n−2 meven TC \big( Conf(\mathbb{R}^m,n) \big) \;=\; \left\{ \begin{array}{ll} 2n-1 & m \; odd \\ 2n-2 & m \; even \end{array} \right.
(with convention TC(*)=1TC(*)=1). \end{proposition}
(Farber & Grant 08, Theorem 1)
References
See also:
- Wikipedia, topological complexity
Definition and basic properties of topological complexity:
- Michael Farber, Topological complexity of motion planning , (2001), Discrete Comput GeomarXiv:math/011119729 ; (2001) 211–221, [[arXiv:math/0111197](https://arxiv.org/abs/math/0111197),doi:10.1007/s00454-002-0760-9]
See also:
- Wikipedia, Topological complexity
On topological complexity of real projective space and connection with their immersion into cartesian space:
- Michael Farber, Serge Tabachnikov, Sergey Yuzvinsky, Topological robotics: motion planning in projective spaces (2002), arXiv:math/0210018;
On topological complexity of connected sums:
- Daniel C. Cohen, Lucile Vandembroucq, Motion planning in connected sums of real projective spaces (2018), arXiv:1807.09947
On topological complexity of the Klein bottle:
- Daniel C. Cohen, Lucile Vandembroucq, Topological Complexity of the Klein bottle (2018), arXiv:1612.03133v3
On topological complexity of configuration space:
- Michael Farber, Mark Grant, Topological Complexity of the Klein bottle (2008), arXiv:0806.4111