vacuum amplitude (changes) in nLab
Showing changes from revision #10 to #11: Added | Removed | Changed
Context
Vacua
Algebraic Quantum Field Theory
algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)
Concepts
quantum mechanical system, quantum probability
interacting field quantization
Theorems
States and observables
Operator algebra
Local QFT
Perturbative QFT
Contents
Idea
In quantum field theory (and string theory) the scattering amplitudes (string scattering amplitudes) “where nothing external scatters,” hence for no incoming and no outgoing states, are called vacuum amplitudes.
Properties
As generating functionals for all other amplitudes
As functions of source fields, the vacuum amplitudes, or rather the vacuum energy, serve as the generating functionals for all correlators/n-point functions (e.g. Scrucca, 1.6).
One loop contribution and zeta functions
The 1-loop vacuum amplitudes are regularized traces over Feynman propagators/Dirac propagators. These are the incarnations of special values of zeta functions, L-functions and eta functions in physics:
context/function field analogy | theta function θ\theta | zeta function ζ\zeta (= Mellin transform of θ(0,−)\theta(0,-)) | L-function L zL_{\mathbf{z}} (= Mellin transform of θ(z,−)\theta(\mathbf{z},-)) | eta function η\eta | special values of L-functions |
---|---|---|---|---|---|
physics/2d CFT | partition function θ(z,τ)=Tr(exp(−τ⋅(D z) 2))\theta(\mathbf{z},\mathbf{\tau}) = Tr(\exp(-\mathbf{\tau} \cdot (D_\mathbf{z})^2)) as function of complex structure τ\mathbf{\tau} of worldsheet Σ\Sigma (hence polarization of phase space) and background gauge field/source z\mathbf{z} | analytically continued trace of Feynman propagator ζ(s)=Tr reg(1(D 0) 2) s=∫ 0 ∞τ s−1θ(0,τ)dτ\zeta(s) = Tr_{reg}\left(\frac{1}{(D_{0})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(0,\tau)\, d\tau | analytically continued trace of Feynman propagator in background gauge field z\mathbf{z}: L z(s)≔Tr reg(1(D z) 2) s=∫ 0 ∞τ s−1θ(z,τ)dτL_{\mathbf{z}}(s) \coloneqq Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(\mathbf{z},\tau)\, d\tau | analytically continued trace of Dirac propagator in background gauge field z\mathbf{z} η z(s)=Tr reg(sgn(D z)|D z|) s\eta_{\mathbf{z}}(s) = Tr_{reg} \left(\frac{sgn(D_{\mathbf{z}})}{ { \vert D_{\mathbf{z}} } \vert }\right)^s | regularized 1-loop vacuum amplitude pvL z(1)=Tr reg(1(D z) 2)pv\, L_{\mathbf{z}}(1) = Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right) / regularized fermionic 1-loop vacuum amplitude pvη z(1)=Tr reg(D z(D z) 2)pv\, \eta_{\mathbf{z}}(1)= Tr_{reg} \left( \frac{D_{\mathbf{z}}}{(D_{\mathbf{z}})^2} \right) / vacuum energy −12L z ′(0)=Z H=12lndet reg(D z 2)-\frac{1}{2}L_{\mathbf{z}}^\prime(0) = Z_H = \frac{1}{2}\ln\;det_{reg}(D_{\mathbf{z}}^2) |
Riemannian geometry (analysis) | zeta function of an elliptic differential operator | zeta function of an elliptic differential operator | eta function of a self-adjoint operator | functional determinant, analytic torsion | |
complex analytic geometry | section θ(z,τ)\theta(\mathbf{z},\mathbf{\tau}) of line bundle over Jacobian variety J(Σ τ)J(\Sigma_{\mathbf{\tau}}) in terms of covering coordinates z\mathbf{z} on ℂ g→J(Σ τ)\mathbb{C}^g \to J(\Sigma_{\mathbf{\tau}}) | zeta function of a Riemann surface | Selberg zeta function | Dedekind eta function | |
arithmetic geometry for a function field | Goss zeta function (for arithmetic curves) and Weil zeta function (in higher dimensional arithmetic geometry) | ||||
arithmetic geometry for a number field | Hecke theta function, automorphic form | Dedekind zeta function (being the Artin L-function L zL_{\mathbf{z}} for z=0\mathbf{z} = 0 the trivial Galois representation) | Artin L-function L zL_{\mathbf{z}} of a Galois representation z\mathbf{z}, expressible “in coordinates” (by Artin reciprocity) as a finite-order Hecke L-function (for 1-dimensional representations) and generally (via Langlands correspondence) by an automorphic L-function (for higher dimensional reps) | class number ⋅\cdot regulator | |
arithmetic geometry for ℚ\mathbb{Q} | Jacobi theta function (z=0\mathbf{z} = 0)/ Dirichlet theta function (z=χ\mathbf{z} = \chi a Dirichlet character) | Riemann zeta function (being the Dirichlet L-function L zL_{\mathbf{z}} for Dirichlet character z=0\mathbf{z} = 0) | Artin L-function of a Galois representation z\mathbf{z} , expressible “in coordinates” (via Artin reciprocity) as a Dirichlet L-function (for 1-dimensional Galois representations) and generally (via Langlands correspondence) as an automorphic L-function |
Vanishing of the vacuum amplitude and supersymmetry
In the presence of supersymmetry 1-loop vacuum amplitudes are typically supposed to vanish.
For the type II superstring, see e.g. (Palti). For the heterotic superstring see e.g. Han 89.
In view of the above relation of 1-loop vacuum amplitudes to special values of L-functions such vanishing reminds one of the Riemann hypothesis. See (ACER 11).
quantum probability theory – observables and states
\linebreak
References
For particles
Discussions for particles includes
-
Claudio Scrucca, Advanced quantum field theory pdf
-
Ori Yudilevich, Calculating Massive One-Loop Amplitudes in QCD, Utrecht 2009 (pdf)
-
Robbert Rietkerk, One-loop amplitudes in perturbative quantum field theory, Utrecht 2012 (pdf)
For strings
Lecture notes for 1-loop vacuum amplitudes for strings (vacuum string scattering amplitudes) include
-
José Edelstein, Lecture 8: 1-loop closed string vacuum amplitude, 2013 (pdf)
-
Eran Palti, The IIA/B superstring one-loop vacuum amplitude (pdf)
-
Seung Kee Han, Vanishing vacuum amplitude of four-dimensional heterotic string theory compactified on N=2 superconformal field theory, Phys. Rev. D 39, 2322 – Published 15 April 1989 (web)
And with relation to the Riemann hypothesis:
- Carlo Angelantonj, Matteo Cardella, Shmuel Elitzur, Eliezer Rabinovici,Shmuel Elitzur, Eliezer Rabinovici, Vacuum stability, string density of states and the Riemann zeta function,JHEP 1102:024,2011 (arXiv:1012.5091)
Last revised on July 6, 2023 at 10:09:31. See the history of this page for a list of all contributions to it.