ncatlab.org

gravitino in nLab

Contents

Context

Gravity

gravity, supergravity

Formalism

Definition

Spacetime configurations

Properties

Spacetimes

Quantum theory

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Super-Geometry

superalgebra and (synthetic ) supergeometry

Background

Introductions

Superalgebra

Supergeometry

Supersymmetry

supersymmetry

Supersymmetric field theory

Applications

Fields and quanta

fields and particles in particle physics

and in the standard model of particle physics:

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

(also: antiparticles)

effective particles

hadrons (bound states of the above quarks)

solitons

in grand unified theory

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

In quantum field theory the term gravitino refers to the superpartner of the graviton, a Rarita-Schwinger field of spin 3/23/2 that appears in supergravity.

In supergravity a field history is a connection on super spacetime locally given by a super Lie algebra-valued differential form

(E,Ω,Ψ):TX⟶𝔦𝔰𝔬(ℝ 1,10|32) (E, \Omega, \Psi) \,\colon\, T X \longrightarrow \mathfrak{iso}\big(\mathbb{R}^{1,10\vert \mathbf{32}}\big)

on spacetime with values in the super Poincaré Lie algebra. Its components Ψ\Psi in the spin representation 32⊂𝔦𝔰𝔬(ℝ 1,10|32)\mathbf{32} \subset \mathfrak{iso}\big(\mathbb{R}^{1,10\vert \mathbf{32}}\big) is the gravitino field.

The name derives from the fact that the other two components are identified in gravity with the graviton field.

Examples

Gravitino in 11d Supergravity

The Rarita-Scwinger-like equation of motion for the gravitino in D=11 N=1 supergravity is (on any chart)

(1)Γ ab 1b 2ρ b 1b 2=0 \Gamma^{a \, b_1 b_2} \, \rho_{b_1 b_2} \;=\; 0

(due to Cremmer, Julia & Scherk 1978, p. 411, cf. Castellani, D’Auria & Fré 1991, §III.8, p. 910),

where

Proposition

(implications of 11d gravitino equation)

We have the following implications of the gravitino equation Γ ab 1b 2ρ b 1b 2=0\Gamma^{a b_1 b_2} \rho_{b_1 b_2} \;=\; 0 (1) in D=11 supergravity:

(2)Γ b 1b 2ρ b 1b 2=0 \Gamma^{b_1 b_2} \, \rho_{b_1 b_2} \;=\; 0

(3)Γ b 1ρ b 1b 2=0 \Gamma^{b_1} \, \rho_{b_1 b_2} \;=\; 0

(4)Γ aa′ρ a′b=−ρ a b \Gamma^{a a'} \, \rho_{a' b} \;=\; - \rho^a{}_b

(5)Γ c 1c 2 b 1b 2ρ b 1b 2=−2ρ c 1c 2. \Gamma_{\!c_1 c_2}{}^{ b_1 b_2 } \rho_{b_1 b_2} \;=\; - 2\rho_{c_1 c_2} \,.

Proof

Equation (2) follows immediately by Clifford contraction:

Γ aΓ ab 1b 2ρ b 1b 2=9Γ b 1b 2ρ b 1b 2 \Gamma_{\!a} \Gamma^{a b_1 b_2} \,\rho_{b_1 b_2} \;=\; 9 \, \Gamma^{b_1 b_2} \,\rho_{b_1 b_2}

Equation (3) follows by the contraction

Γ caΓ ab 1b 2ρ b 1b 2=18Γ bρ cb+8Γ cb 1b 2ρ b 1b 2 \begin{array}{l} \Gamma_{\!c a} \Gamma^{a b_1 b_2} \, \rho_{b_1 b_2} \;=\; 18 \, \Gamma^{b} \rho_{ c b } \;+\; 8 \, \Gamma^{c b_1 b_2} \rho_{b_1 b_2} \end{array}

and using that the second summand vanishes by assumption (1).

For equation (4) we compute as follows:

Γ aa′ρ a′b =12(Γ aΓ a′ρ a′b−Γ a′Γ aρ a′b) =−12Γ a′Γ aρ a′b =12Γ aΓ a′ρ a′b−η aa′ρ a′b =−ρ a b, \begin{array}{l} \Gamma^{a a'}\rho_{a' b} \\ \;=\; \tfrac{1}{2} \big( \Gamma^a \Gamma^{a'} \rho_{a' b} - \Gamma^{a'} \Gamma^a \rho_{a' b} \big) \\ \;=\; - \tfrac{1}{2} \Gamma^{a'} \Gamma^a \rho_{a' b} \\ \;=\; \tfrac{1}{2} \Gamma^a \Gamma^{a'} \rho_{a' b} - \eta^{a a'} \rho_{a' b} \\ \;=\; -\rho^a{}_b \,, \end{array}

where in the second and fourth step we used (3).

For (5) we consider this contraction:

Γ c 1c 2aΓ ab 2b 3ρ b 2b 3 =16Γ c 1 bρ c 2b−16Γ c 2 bρ c 1b−18ρ c 1c 2+7Γ c 1c 2 b 1b 2ρ b 1b 2 =16ρ c 1c 2−16ρ c 2c 1−18ρ c 1c 2+7Γ c 1c 2 b 1b 2ρ b 1b 2 =14ρ c 1c 2+7Γ c 1c 2 b 1b 2ρ b 1b 2, \begin{array}{l} \Gamma_{c_1 c_2 a} \Gamma^{a b_2 b_3} \rho_{b_2 b_3} \\ \;=\; 16 \Gamma_{c_1}{}^{b} \rho_{c_2 b} - 16 \Gamma_{c_2}{}^{b} \rho_{c_1 b} - 18 \rho_{c_1 c_2} + 7 \Gamma_{c_1 c_2}{}^{ b_1 b_2 } \rho_{b_1 b_2} \\ \;=\; 16 \rho_{c_1 c_2} - 16 \rho_{c_2 c_1} - 18 \rho_{c_1 c_2} + 7 \Gamma_{c_1 c_2}{}^{ b_1 b_2 } \rho_{b_1 b_2} \\ \;=\; 14 \rho_{c_1 c_2} + 7 \Gamma_{c_1 c_2}{}^{ b_1 b_2 } \rho_{b_1 b_2} \,, \end{array}

where in the second step we used (4).

References

General

See also

Classification of long-range forces

Classification of possible long-range forces, hence of scattering processes of massless fields, by classification of suitably factorizing and decaying Poincaré-invariant S-matrices depending on particle spin, leading to uniqueness statements about Maxwell/photon-, Yang-Mills/gluon-, gravity/graviton- and supergravity/gravitino-interactions:

Review:

As a dark matter candidate

Discussion of the gravitino as a dark matter candidate:

A proposal for super-heavy gravitinos as dark matter, by embedding D=4 N=8 supergravity into E10-U-duality-invariant M-theory:

following the proposal towards the end of

  • Murray Gell-Mann, introductory talk at Shelter Island II, 1983 (pdf)

    in: Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics. MIT Press. pp. 301–343. ISBN 0-262-10031-2.

Further discussion:

Last revised on October 27, 2024 at 10:30:35. See the history of this page for a list of all contributions to it.