hom-functor preserves limits in nLab
Proposition
(hom-functor preserves limits)
Let ๐\mathcal{C} be a category and write
Hom ๐:๐ opร๐โถSet Hom_{\mathcal{C}} \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow Set
for its hom-functor. This preserves limits in both its arguments (recalling that a limit in the opposite category ๐ op\mathcal{C}^{op} is a colimit in ๐\mathcal{C}).
More in detail, let X โข:โโถ๐X_\bullet \colon \mathcal{I} \longrightarrow \mathcal{C} be a diagram. Then:
-
If the limit limโต iX i\underset{\longleftarrow}{\lim}_i X_i exists in ๐\mathcal{C} then for all Yโ๐Y \in \mathcal{C} there is a natural isomorphism
Hom ๐(Y,limโต iX i)โlimโต i(Hom ๐(Y,X i)), Hom_{\mathcal{C}}\left(Y, \underset{\longleftarrow}{\lim}_i X_i \right) \simeq \underset{\longleftarrow}{\lim}_i \left( Hom_{\mathcal{C}}\left( Y, X_i \right) \right) \,,
where on the right we have the limit over the diagram of hom-sets given by
Hom ๐(Y,โ)โX:โโถX๐โถHom ๐(Y,โ)Set. Hom_{\mathcal{C}}(Y,-) \circ X \;\colon\; \mathcal{I} \overset{X}{\longrightarrow} \mathcal{C} \overset{Hom_{\mathcal{C}}(Y,-) }{\longrightarrow} Set\,.
-
If the colimit limโถ iX i\underset{\longrightarrow}{\lim}_i X_i exists in ๐\mathcal{C} then for all Yโ๐Y \in \mathcal{C} there is a natural isomorphism
Hom ๐(limโถ iX i,Y)โlimโต i(Hom ๐(X i,Y)), Hom_{\mathcal{C}}\left(\underset{\longrightarrow}{\lim}_i X_i ,Y\right) \simeq \underset{\longleftarrow}{\lim}_i \left( Hom_{\mathcal{C}}\left( X_i , Y\right) \right) \,,
where on the right we have the limit over the diagram of hom-sets given by
Hom ๐(โ,Y)โX:โ opโถX๐ opโถHom ๐(โ,Y)Set. Hom_{\mathcal{C}}(-,Y) \circ X \;\colon\; \mathcal{I}^{op} \overset{X}{\longrightarrow} \mathcal{C}^{op} \overset{Hom_{\mathcal{C}}(-,Y) }{\longrightarrow} Set\,.
Proof
We give the proof of the first statement. The proof of the second statement is formally dual.
First observe that, by the very definition of limiting cones, maps out of some YY into them are in natural bijection with the set Cones(Y,X โข)Cones\left(Y, X_\bullet \right) of cones over the diagram X โขX_\bullet with tip YY:
Hom(Y,limโต iX i)โCones(Y,X โข). Hom\left( Y, \underset{\longleftarrow}{\lim}_{i} X_i \right) \;\simeq\; Cones\left( Y, X_\bullet \right) \,.
Hence it remains to show that there is also a natural bijection like so:
Cones(Y,X โข)โlimโต i(Hom(Y,X i)). Cones\left( Y, X_\bullet \right) \;\simeq\; \underset{\longleftarrow}{\lim}_{i} \left( Hom(Y,X_i) \right) \,.
Now, again by the very definition of limiting cones, a single element in the limit on the right is equivalently a cone of the form
{ * const p iโ โ const p j Hom(Y,X i) โถX ฮฑโ(โ) Hom(Y,X j)} i,jโObj(โ),ฮฑโHom โ(i,j). \left\{ \array{ && \ast \\ & {}^{\mathllap{const_{p_i}}}\swarrow && \searrow^{\mathrlap{const_{p_j}}} \\ Hom(Y,X_i) && \underset{X_\alpha \circ (-)}{\longrightarrow} && Hom(Y,X_j) } \right\}_{i, j \in Obj(\mathcal{I}), \alpha \in Hom_{\mathcal{I}}(i,j) } \,.
This is equivalently for each object iโโi \in \mathcal{I} a choice of morphism p i:YโX ip_i \colon Y \to X_i , such that for each pair of objects i,jโโi,j \in \mathcal{I} and each ฮฑโHom โ(i,j)\alpha \in Hom_{\mathcal{I}}(i,j) we have X ฮฑโp i=p jX_\alpha \circ p_i = p_j. And indeed, this is precisely the characterization of an element in the set Cones(Y,X โข) Cones\left( Y, X_{\bullet} \right).
Proposition
(internal hom-functor preserves limits)
Let ๐\mathcal{C} be a symmetric closed monoidal category with internal hom-bifunctor [โ,โ][-,-]. Then this bifunctor preserves limits in the second variable, and sends colimits in the first variable to limits:
[X,limโตjโ๐ฅY(j)]โlimโตjโ๐ฅ[X,Y(j)] [X, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Y(j)] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [X, Y(j)]
and
[limโถjโ๐ฅY(j),X]โlimโตjโ๐ฅ[Y(j),X] [\underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j),X] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j),X]
Proof
For Xโ๐X \in \mathcal{C} any object, [X,โ][X,-] is a right adjoint by definition, and hence preserves limits as adjoints preserve (co-)limits.
For the other case, let Y:โโ๐Y \;\colon\; \mathcal{L} \to \mathcal{C} be a diagram in ๐\mathcal{C}, and let Cโ๐C \in \mathcal{C} be any object. Then there are isomorphisms
Hom ๐(C,[limโถjโ๐ฅY(j),X]) โHom ๐(Cโlimโถjโ๐ฅY(j),X) โHom ๐(limโถjโ๐ฅ(CโY(j)),X) โlimโตjโ๐ฅHom ๐((CโY(j)),X) โlimโตjโ๐ฅHom ๐(C,[Y(j),X]) โHom ๐(C,limโตjโ๐ฅ[Y(j),X]) \begin{aligned} Hom_{\mathcal{C}}(C, [ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ] ) & \simeq Hom_{\mathcal{C}}( C \otimes \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ) \\ & \simeq Hom_{\mathcal{C}}( \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( C, [Y(j), X] ) \\ & \simeq Hom_{\mathcal{C}}( C, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] ) \end{aligned}
which are natural in Cโ๐C \in \mathcal{C}, where we used that the ordinary hom-functor respects (co)limits as shown (see at hom-functor preserves limits), and that the left adjoint Cโ(โ)C \otimes (-) preserves colimits (see at adjoints preserve (co-)limits).
Hence by the fully faithfulness of the Yoneda embedding, there is an isomorphism
[limโถjโ๐ฅY(j),X]โถโlimโตjโ๐ฅ[Y(j),X]. \left[ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X \right] \overset{\simeq}{\longrightarrow} \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] \,.