ncatlab.org

hom-functor preserves limits in nLab

Proposition

(hom-functor preserves limits)

Let ๐’ž\mathcal{C} be a category and write

Hom ๐’ž:๐’ž opร—๐’žโŸถSet Hom_{\mathcal{C}} \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow Set

for its hom-functor. This preserves limits in both its arguments (recalling that a limit in the opposite category ๐’ž op\mathcal{C}^{op} is a colimit in ๐’ž\mathcal{C}).

More in detail, let X โ€ข:โ„โŸถ๐’žX_\bullet \colon \mathcal{I} \longrightarrow \mathcal{C} be a diagram. Then:

  1. If the limit limโŸต iX i\underset{\longleftarrow}{\lim}_i X_i exists in ๐’ž\mathcal{C} then for all Yโˆˆ๐’žY \in \mathcal{C} there is a natural isomorphism

    Hom ๐’ž(Y,limโŸต iX i)โ‰ƒlimโŸต i(Hom ๐’ž(Y,X i)), Hom_{\mathcal{C}}\left(Y, \underset{\longleftarrow}{\lim}_i X_i \right) \simeq \underset{\longleftarrow}{\lim}_i \left( Hom_{\mathcal{C}}\left( Y, X_i \right) \right) \,,

    where on the right we have the limit over the diagram of hom-sets given by

    Hom ๐’ž(Y,โˆ’)โˆ˜X:โ„โŸถX๐’žโŸถHom ๐’ž(Y,โˆ’)Set. Hom_{\mathcal{C}}(Y,-) \circ X \;\colon\; \mathcal{I} \overset{X}{\longrightarrow} \mathcal{C} \overset{Hom_{\mathcal{C}}(Y,-) }{\longrightarrow} Set\,.

  2. If the colimit limโŸถ iX i\underset{\longrightarrow}{\lim}_i X_i exists in ๐’ž\mathcal{C} then for all Yโˆˆ๐’žY \in \mathcal{C} there is a natural isomorphism

    Hom ๐’ž(limโŸถ iX i,Y)โ‰ƒlimโŸต i(Hom ๐’ž(X i,Y)), Hom_{\mathcal{C}}\left(\underset{\longrightarrow}{\lim}_i X_i ,Y\right) \simeq \underset{\longleftarrow}{\lim}_i \left( Hom_{\mathcal{C}}\left( X_i , Y\right) \right) \,,

    where on the right we have the limit over the diagram of hom-sets given by

    Hom ๐’ž(โˆ’,Y)โˆ˜X:โ„ opโŸถX๐’ž opโŸถHom ๐’ž(โˆ’,Y)Set. Hom_{\mathcal{C}}(-,Y) \circ X \;\colon\; \mathcal{I}^{op} \overset{X}{\longrightarrow} \mathcal{C}^{op} \overset{Hom_{\mathcal{C}}(-,Y) }{\longrightarrow} Set\,.

Proof

We give the proof of the first statement. The proof of the second statement is formally dual.

First observe that, by the very definition of limiting cones, maps out of some YY into them are in natural bijection with the set Cones(Y,X โ€ข)Cones\left(Y, X_\bullet \right) of cones over the diagram X โ€ขX_\bullet with tip YY:

Hom(Y,limโŸต iX i)โ‰ƒCones(Y,X โ€ข). Hom\left( Y, \underset{\longleftarrow}{\lim}_{i} X_i \right) \;\simeq\; Cones\left( Y, X_\bullet \right) \,.

Hence it remains to show that there is also a natural bijection like so:

Cones(Y,X โ€ข)โ‰ƒlimโŸต i(Hom(Y,X i)). Cones\left( Y, X_\bullet \right) \;\simeq\; \underset{\longleftarrow}{\lim}_{i} \left( Hom(Y,X_i) \right) \,.

Now, again by the very definition of limiting cones, a single element in the limit on the right is equivalently a cone of the form

{ * const p iโ†™ โ†˜ const p j Hom(Y,X i) โŸถX ฮฑโˆ˜(โˆ’) Hom(Y,X j)} i,jโˆˆObj(โ„),ฮฑโˆˆHom โ„(i,j). \left\{ \array{ && \ast \\ & {}^{\mathllap{const_{p_i}}}\swarrow && \searrow^{\mathrlap{const_{p_j}}} \\ Hom(Y,X_i) && \underset{X_\alpha \circ (-)}{\longrightarrow} && Hom(Y,X_j) } \right\}_{i, j \in Obj(\mathcal{I}), \alpha \in Hom_{\mathcal{I}}(i,j) } \,.

This is equivalently for each object iโˆˆโ„i \in \mathcal{I} a choice of morphism p i:Yโ†’X ip_i \colon Y \to X_i , such that for each pair of objects i,jโˆˆโ„i,j \in \mathcal{I} and each ฮฑโˆˆHom โ„(i,j)\alpha \in Hom_{\mathcal{I}}(i,j) we have X ฮฑโˆ˜p i=p jX_\alpha \circ p_i = p_j. And indeed, this is precisely the characterization of an element in the set Cones(Y,X โ€ข) Cones\left( Y, X_{\bullet} \right).

Proposition

(internal hom-functor preserves limits)

Let ๐’ž\mathcal{C} be a symmetric closed monoidal category with internal hom-bifunctor [โˆ’,โˆ’][-,-]. Then this bifunctor preserves limits in the second variable, and sends colimits in the first variable to limits:

[X,limโŸตjโˆˆ๐’ฅY(j)]โ‰ƒlimโŸตjโˆˆ๐’ฅ[X,Y(j)] [X, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Y(j)] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [X, Y(j)]

and

[limโŸถjโˆˆ๐’ฅY(j),X]โ‰ƒlimโŸตjโˆˆ๐’ฅ[Y(j),X] [\underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j),X] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j),X]

Proof

For Xโˆˆ๐’žX \in \mathcal{C} any object, [X,โˆ’][X,-] is a right adjoint by definition, and hence preserves limits as adjoints preserve (co-)limits.

For the other case, let Y:โ„’โ†’๐’žY \;\colon\; \mathcal{L} \to \mathcal{C} be a diagram in ๐’ž\mathcal{C}, and let Cโˆˆ๐’žC \in \mathcal{C} be any object. Then there are isomorphisms

Hom ๐’ž(C,[limโŸถjโˆˆ๐’ฅY(j),X]) โ‰ƒHom ๐’ž(CโŠ—limโŸถjโˆˆ๐’ฅY(j),X) โ‰ƒHom ๐’ž(limโŸถjโˆˆ๐’ฅ(CโŠ—Y(j)),X) โ‰ƒlimโŸตjโˆˆ๐’ฅHom ๐’ž((CโŠ—Y(j)),X) โ‰ƒlimโŸตjโˆˆ๐’ฅHom ๐’ž(C,[Y(j),X]) โ‰ƒHom ๐’ž(C,limโŸตjโˆˆ๐’ฅ[Y(j),X]) \begin{aligned} Hom_{\mathcal{C}}(C, [ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ] ) & \simeq Hom_{\mathcal{C}}( C \otimes \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ) \\ & \simeq Hom_{\mathcal{C}}( \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( C, [Y(j), X] ) \\ & \simeq Hom_{\mathcal{C}}( C, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] ) \end{aligned}

which are natural in Cโˆˆ๐’žC \in \mathcal{C}, where we used that the ordinary hom-functor respects (co)limits as shown (see at hom-functor preserves limits), and that the left adjoint CโŠ—(โˆ’)C \otimes (-) preserves colimits (see at adjoints preserve (co-)limits).

Hence by the fully faithfulness of the Yoneda embedding, there is an isomorphism

[limโŸถjโˆˆ๐’ฅY(j),X]โŸถโ‰ƒlimโŸตjโˆˆ๐’ฅ[Y(j),X]. \left[ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X \right] \overset{\simeq}{\longrightarrow} \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] \,.