ncatlab.org

theorem in nLab

Theorems

Context

Foundations

foundations

The basis of it all

 Set theory

set theory

Foundational axioms

foundational axioms

Removing axioms

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

homotopy levels

semantics

There are good reasons why the theorems should all be easy and the definitions hard. (Michael Spivak, preface to “Calculus on Manifolds” )

Theorems

Idea

In the traditional language of mathematics, a theorem is a statement which is of interest in its own right and which has been proven to be true, though the proof may not be immediately obvious. This contrasts with a lemma (which is usually of interest primarily because of its implications for other statements), a conjecture (which has not yet been proved), an axiom (which is obviously true or assumed to be true), a definition (which becomes true by virtue of its assigning meaning to a word or phrase), a proposition (which usually follows more easily from known facts than a theorem does), or a corollary (which follows immediately from facts recently proven).

The discipline of logic formalizes the notion of proof, but not the notions of “interest” or “immediacy”. Thus, to a logician, any proved statement is often called a theorem. (Mathematicians know this meaning too, but still usually reserve the term ‘theorem’ for important theorems in their published work.) The term ‘proposition’, to a logician, means any statement and does not imply the existence of a proof. The term ‘axiom’ is used in a way that somewhat matches its ordinary usage, but as a logician counts trivial proofs as proofs, an axiom is also a special case of a theorem. Logic rarely studies definitions explicitly, but in some theories they do play a role, similar to their informal usage. The other terms appear not to be used in logic.

Definition

In a given logic, in a given context, we have various propositions and various proofs of propositions. In that context, a theorem is a proposition with a proof.

Classically, a theorem is a proposition for which there exists a proof, but in some contexts (such as, perhaps, fully formalized constructive type theory), one may use “theorem” to mean a proposition together with a proof.

A theorem should be contrasted with a tautology: a proposition that is true in all models. If every theorem in a given logic is a tautology in a given class of models for that logic, then we say that the class of models is sound for that logic; if conversely every tautology is a theorem, then we say that the class of models is complete.

Examples

… we might list famous important theorems/lemmas/etc in the nnLab here …

Quotations

  • A mathematician is a device for turning coffee into theorems. —Alfréd Rényi

  • Lemmas do the work in mathematics: Theorems, like management, just take the credit. —Paul Taylor

References

  • Thomas Hales, Formal proof (pdf)

  • John Harrison, Formal proof – theory and practice (pdf)

Last revised on March 5, 2023 at 13:32:11. See the history of this page for a list of all contributions to it.