Kac-Moody algebra in nLab
- ️Invalid Date
Context
Lie theory
∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
∞\infty-Lie groupoids
∞\infty-Lie groups
∞\infty-Lie algebroids
∞\infty-Lie algebras
Contents
Idea
The notion of Kac-Moody Lie algebra is a generalization of that of semisimple Lie algebra to infinite dimension of the underlying vector space.
Definition
Kac-Moody algebras
Recall that the Lie algebra of 𝔰𝔩 2 \mathfrak{sl}_2 admits a linear basis (h,e,f)(h,e,f) on which the non-vanishing Lie brackets are
[e,f]=hand[h,e] = −2e [h,f] = −2f. [e,f] \;=\; h \;\;\;\text{and}\;\;\; \begin{array}{rcl} [h,e] &=& \phantom{-}2 e \\ [h,f] &=& -2 f \mathrlap{\,.} \end{array}
A Kac-Moody Lie algebra is generated from a set of r∈ℕr \in \mathbb{N} such 𝔰𝔩 2\mathfrak{sl}_2 generators, (h i,e i,f i) i=1 r(h_i, e_i, f_i)_{i = 1}^r, which in addition interact among each other as specified by a prescribed generalized Cartan matrix A=(A ij) i,j=1 rA = (A_{i j})_{i,j=1}^r:
(1)∀i,j A ij∈ℤ ∀i A ii=2 ∀i≠j A ij≤0 ∀i,j A ij=0⇔A ji=0 ∃D∈DiagMat r×r(ℤ)S∈SymMat r×r(ℤ) A=DS \begin{array}{cl} \underset{i,j}{\forall} & A_{i j} \,\in\, \mathbb{Z} \\ \underset{i}{\forall} & A_{i i} = 2 \\ \underset{i \neq j}{\forall} & A_{i j} \leq 0 \\ \underset{i, j}{\forall} & A_{i j} = 0 \;\Leftrightarrow\; A_{j i} = 0 \\ \underset{ { D \in DiagMat_{r \times r}(\mathbb{Z}) } \atop { S \in SymMat_{r \times r}(\mathbb{Z}) } }{\exists} & A = D S \end{array}
(where in the last line DD is a diagonal matrix and SS a symmetric matrix)
via the following Chevalley relations:
(2)[h i,h j]=0 [h i,e j]=−A ije j [h i,f j]=−A ijf j [e i,f i]=δ ijh j \begin{array}{l} [h_i, h_j] \,=\, 0 \\ [h_i, e_j] \,=\, \phantom{-}A_{i j} e_j \\ [h_i, f_j] \,=\, -A_{i j} f_j \\ [e_i, f_i] \,=\, \delta_{i j} h_j \end{array}
and subject to the following Serre relations for the adjoint action ad(e i)(−)∶−[e i,−]ad(e_i)(-) \,\coloneq\,[e_i,-]:
(3)ad(e i) 1−A ij(e j)=0 ad(f i) 1−A ij(e j)=0. \begin{array}{l} ad(e_i)^{1 - A_{ij}}(e_j) \,=\, 0 \\ ad(f_i)^{1 - A_{ij}}(e_j) \,=\, 0 \,. \end{array}
The generalized Cartan matrix AA, and hence 𝔤 A\mathfrak{g}_A, is called:
-
simply-laced if ∀i≠jA ij∈{0,−1}\underset{i \neq j}{\forall}\; A_{i j} \,\in\, \{0,-1\}
-
symmetric if ∀i,jA ij=A ji\underset{i, j}{\forall}\; A_{i j} = A_{j i}.
A symmetric generalized Cartan matrix is equivalently encoded in the Dynkin diagram that it is the coincidence matrix of: The undirected graph with rr vertices and A ijA_{i j} edges between the iith and the jjth vertex.
Maximal-compact (involutory) subalgebras
Definition
Given a Kac-Moody algebra 𝔤 A\mathfrak{g}_A (according to Def. ), its Cartan-Chevalley involution is the Lie algebra endomorphism given on generators by
(4)𝔤 A →θ 𝔤 A e i ↦ −f i f i ↦ −e i h i ↦ −h i \begin{array}{ccc} \mathfrak{g}_A &\xrightarrow{\;\; \theta \;\;}& \mathfrak{g}_A \\ e_i &\mapsto& - f_i \\ f_i &\mapsto& - e_i \\ h_i &\mapsto& - h_i \end{array}
Definition
The maximal compact (or involutory) subalgebra 𝔨 A⊂𝔤 A\mathfrak{k}_A \,\subset\, \mathfrak{g}_A is the fixed locus of the Cartan-Chevalley involution (Def. ):
𝔨 A≔𝔨(𝔤 A)≔{x∈𝔤 A|θ(x)=x}. \mathfrak{k}_A \,\coloneqq\, \mathfrak{k}(\mathfrak{g}_A) \;\coloneqq\; \big\{ x \,\in\, \mathfrak{g}_A \,\big\vert\, \theta(x) = x \big\} \,.
For Kac-Moody algebras which are Lie algebras of classical Lie groups, the maximal compact subalgebra (Def. ) is indeed the Lie algebra of the maximal compact subgroup:
Generalizing from this, it may often be useful to think of the involutory subalgebra as consisting of the anti-Hermitian elements.
Examples
The sequence of exceptional semisimple Lie algebras 𝔢 6 \mathfrak{e}_6 , 𝔢 7 \mathfrak{e}_7 𝔢 8 \mathfrak{e}_8 may be continued to the Kac-Moody algebras:
References
General
On the Wess-Zumino-Witten model 2d CFT via Kac-Moody algebra and Virasoro algebra:
- Peter Goddard, David Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, International Journal of Modern Physics A 01 02 (1986) 303-414 [doi:10.1142/S0217751X86000149, spire:18583]
Lecture notes:
- Antony Wassermann: Kac-Moody and Virasoro algebras, course notes (2011) [arXiv:1004.1287]
With an eye towards U-duality in 11D supergravity:
- Hermann Nicolai (notes by Oliver Schlotterer): Infinite dimensional symmetries, lecture at Saalburg summer school in Wolfersdorf, Thuringia (2009) [pdf]
A standard textbook account:
- Victor G. Kac, Infinite Dimensional Lie Algebras, Progress in Mathematics 44 Springer 1983 [doi:10.1007/978-1-4757-1382-4], Cambridge University Press (1990) [doi:10.1017/CBO9780511626234]
Collections of articles:
- N. Sthanumoorty, K. Misra (eds.): Kac-Moody Lie algebras and related topics, Contemporary Mathematics 343 AMS (2002) [ISBN:978-0-8218-7933-7, ams:conm-343]
See also:
- Wikipedia: Kac-Moody algebra
The EE-series
Surveys:
- Wikipedia, En
The fact that every simply laced hyperbolic Kac-Moody algebra appears as a subalgebra of E 10 E_{10} :
- Sankaran Viswanath: Embeddings of hyperbolic Kac-Moody algebras into E 10E_{10} [arXiv:0801.2586, doi:10.1007/s11005-007-0214-7, doi:10.1007/s11005-007-0214-7]
Affine Lie algebras
For more see also at affine Lie algebra.
- David Hernandez: An introduction to affine Kac-Moody algebras, lecture notes (2006) [pdf, pdf]
In supergravity
The following references discuss aspects of the Kac-Moody exceptional geometry of supergravity theories.
(for much more see the references at U-duality and exceptional field theory)
-
Hermann Nicolai, Infinite dimensional symmetries (2009) (pdf)
-
Paul Cook, Connections between Kac-Moody algebras and M-theory PhD thesis (arXiv:0711.3498)
-
Daniel Persson, Nassiba Tabti, Lectures on Kac-Moody algebras with applications in (Super-)Gravity (pdf)
Maximal compact subalgebras
On non-trivial finite-dimensional representations of involutary (“maximal compact”) subalgebras 𝔨\mathfrak{k}:
-
Axel Kleinschmidt, Hermann Nicolai, Adriano Viganò: On spinorial representations of involutory subalgebras of Kac-Moody algebras, In: Partition Functions and Automorphic Forms, Moscow Lectures 5, Springer (2020) [arXiv:1811.11659, doi:10.1007/978-3-030-42400-8_4]
-
Axel Kleinschmidt, Ralf Köhl, Robin Lautenbacher, Hermann Nicolai: Representations of involutory subalgebras of affine Kac-Moody algebras, Commun. Math. Phys. 392 (2022) 89–123 [arXiv:2102.00870, doi:10.1007/s00220-022-04342-9]
-
Axel Kleinschmidt, Hermann Nicolai, Jakob Palmkvist: K(E 9)K(E_9) from K(E 10)K(E_{10}), Journal of High Energy Physics 2007 JHEP06 (2007) [arXiv:hep-th/0611314, doi:10.1088/1126-6708/2007/06/051]
-
Robin Lautenbacher, Ralf Köhl: Higher spin representations of maximal compact subalgebras of simply-laced Kac-Moody-algebras [arXiv:2409.07247]
Last revised on December 9, 2024 at 08:17:58. See the history of this page for a list of all contributions to it.