metrisable topological space in nLab
Context
Topology
topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Basic concepts
-
fiber space, space attachment
Extra stuff, structure, properties
-
Kolmogorov space, Hausdorff space, regular space, normal space
-
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
-
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
-
open subspaces of compact Hausdorff spaces are locally compact
-
compact spaces equivalently have converging subnet of every net
-
continuous metric space valued function on compact metric space is uniformly continuous
-
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
-
injective proper maps to locally compact spaces are equivalently the closed embeddings
-
locally compact and second-countable spaces are sigma-compact
Theorems
Analysis Theorems
Contents
Definition
A topological space (X,τ)(X,\tau) is called metrisable if there exists the stucture of a metric space (X,d)(X,d) on the underlying set, such that τ\tau is the corresponding metric topology. If there exists such a (X,d)(X,d) which is complete, then (X,τ)(X,\tau) is called completely metrisable.
Properties
Metrizable spaces enjoy a number of separation properties: they are Hausdorff, regular, and even normal. They are also paracompact.
Metrizable spaces are closed under topological coproducts and of course subspaces (and therefore equalizers); they are closed under countable products but not general products (for instance, a product of uncountably many copies of the real line ℝ\mathbb{R} is not a normal space).
Metrisability theorem
Fundamental early work in point-set topology established a number of metrization theorems, i.e., theorems which give sufficient conditions for a space to be metrisable. One of the more useful theorems is Urysohn metrization theorem: A regular, Hausdorff, and second-countable space is metrisable. So, for instance, a compact Hausdorff space that is second-countable is metrisable. Other metrization theorems are:
-
Nagata-Smirnov metrization theorem
-
Bing metrization theorem
-
Moore metrization theorem
References
See also
- Wikipedia, Metrization theorem
Last revised on March 20, 2024 at 20:19:19. See the history of this page for a list of all contributions to it.