model structure for excisive functors in nLab
Context
Model category theory
model category, model ∞ \infty -category
Definitions
Morphisms
Universal constructions
Refinements
Producing new model structures
Presentation of (∞,1)(\infty,1)-categories
Model structures
for ∞\infty-groupoids
-
on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
for equivariant ∞\infty-groupoids
for rational ∞\infty-groupoids
for rational equivariant ∞\infty-groupoids
for nn-groupoids
for ∞\infty-groups
for ∞\infty-algebras
general ∞\infty-algebras
specific ∞\infty-algebras
for stable/spectrum objects
for (∞,1)(\infty,1)-categories
for stable (∞,1)(\infty,1)-categories
for (∞,1)(\infty,1)-operads
for (n,r)(n,r)-categories
for (∞,1)(\infty,1)-sheaves / ∞\infty-stacks
Stable Homotopy theory
Ingredients
Contents
Contents
Idea
A model category structure for excisive functors on functors from (finite) pointed simplicial sets to pointed simplicial sets (Lydakis 98, theorem 9.2, Biedermann-Chorny-Röndings 06, section 9), hence (see here) a model structure for spectra (Lydakis 98, theorem 11.3).
Special case of a model structure for n-excisive functors.
Definition
The underlying categories
Definition
Write
-
sSet for the category of simplicial sets;
-
sSet */sSet^{\ast/} for the category of pointed simplicial sets;
-
sSet fin */≃s(FinSet) */↪sSet */sSet_{fin}^{\ast/}\simeq s(FinSet)^{\ast/} \hookrightarrow sSet^{\ast/} for the full subcategory of pointed simplicial finite sets.
Write
sSet */⟶u⟵(−) +sSet sSet^{\ast/} \stackrel{\overset{(-)_+}{\longleftarrow}}{\underset{u}{\longrightarrow}} sSet
for the free-forgetful adjunction, where the left adjoint functor (−) +(-)_+ freely adjoins a base point.
Write
∧:sSet */×sSet */⟶sSet */ \wedge \colon sSet^{\ast/} \times sSet^{\ast/} \longrightarrow sSet^{\ast/}
for the smash product of pointed simplicial sets, similarly for its restriction to sSet fin *sSet_{fin}^{\ast}:
X∧Y≔cofib(((u(X),*)⊔(*,u(Y)))⟶u(X)×u(Y)). X \wedge Y \coloneqq cofib\left( \; \left(\, (u(X),\ast) \sqcup (\ast, u(Y)) \,\right) \longrightarrow u(X) \times u(Y) \; \right) \,.
This gives sSet */sSet^{\ast/} and sSet fin */sSet^{\ast/}_{fin} the structure of a closed monoidal category and we write
[−,−] *:(sSet */) op×sSet */⟶sSet */ [-,-]_\ast \;\colon\; (sSet^{\ast/})^{op} \times sSet^{\ast/} \longrightarrow sSet^{\ast/}
for the corresponding internal hom, the pointed function complex functor.
We regard all the categories in def. canonically as simplicially enriched categories, and in fact regard sSet */sSet^{\ast/} and sSet fin */sSet^{\ast/}_{fin} as sSet */sSet^{\ast/}-enriched categories.
The category that is discussed below to support a model structure for excisive functors is the sSet */sSet^{\ast/}-enriched functor category
[sSet fin */,sSet */]. [sSet^{\ast/}_{fin}, sSet^{\ast/}] \,.
(Lydakis 98, example 3.8, def. 4.4)
In order to compare this to model structures for sequential spectra we consider also the following variant.
Definition
Write S std 1≔Δ[1]/∂Δ[1]∈sSet */S^1_{std} \coloneqq \Delta[1]/\partial\Delta[1]\in sSet^{\ast/} for the standard minimal pointed simplicial 1-sphere.
Write
ι:StdSpheres⟶sSet fin */ \iota \;\colon\; StdSpheres \longrightarrow sSet^{\ast/}_{fin}
for the non-full sSet */sSet^{\ast/}-enriched subcategory of pointed simplicial finite sets, def. whose
-
objects are the smash product powers S std n≔(S std 1) ∧ nS^n_{std} \coloneqq (S^1_{std})^{\wedge^n} (the standard minimal simplicial n-spheres);
-
hom-objects are
[S std n,S std n+k] StdSpheres≔{* for k<0 im(S std k→[S std n,S std n+k] sSet fin */) otherwise [S^{n}_{std}, S^{n+k}_{std}]_{StdSpheres} \coloneqq \left\{ \array{ \ast & for & k \lt 0 \\ im(S^{k}_{std} \stackrel{}{\to} [S^n_{std}, S^{n+k}_{std}]_{sSet^{\ast/}_{fin}}) & otherwise } \right.
Proposition
There is an sSet */sSet^{\ast/}-enriched functor
(−) seq:[StdSpheres,sSet */]⟶SeqPreSpec(sSet) (-)^seq \;\colon\; [StdSpheres,sSet^{\ast/}] \longrightarrow SeqPreSpec(sSet)
(from the category of sSet */sSet^{\ast/}-enriched copresheaves on the categories of standard simplicial spheres of def. to the category of sequential prespectra in sSet) given on objects by sending X∈[StdSpheres,sSet */]X \in [StdSpheres,sSet^{\ast/}] to the sequential prespectrum X seqX^{seq} with components
X n seq≔X(S std n) X^{seq}_n \coloneqq X(S^n_{std})
and with structure maps
S std 1∧X n seq⟶σ nX n seqS std 1⟶[X n seq,X n+1 seq] \frac{S^1_{std} \wedge X^{seq}_n \stackrel{\sigma_n}{\longrightarrow} X^{seq}_n}{S^1_{std} \longrightarrow [X^{seq}_n, X^{seq}_{n+1}]}
given by
S std 1⟶id˜[S std n,S std n+1]⟶X S std n,S std n+1[X n seq,X n+1 seq]. S^1_{std} \stackrel{\widetilde{id}}{\longrightarrow} [S^n_{std}, S^{n+1}_{std}] \stackrel{X_{S^n_{std}, S^{n+1}_{std}}}{\longrightarrow} [X^{seq}_n, X^{seq}_{n+1}] \,.
This is an sSet */sSet^{\ast/} enriched equivalence of categories.
The model structures
Consider the sSet */sSet^{\ast/}-enriched functor category [sSet fin */,sSet */][sSet^{\ast/}_{fin}, sSet^{\ast/}] from above.
With S std 1≔Δ[1]/∂Δ[1]∈sSet */S^1_{std} \coloneqq \Delta[1]/\partial\Delta[1] \in sSet^{\ast/} we take looping and delooping (Σ⊣Ω)(\Sigma \dashv \Omega) to mean concretely the operation on smash product and pointed exponential with this particular S std 1S^1_{std}:
(Σ⊣Ω)≔(S std 1∧(−)⊣[S std 1,−]):sSet */⟶sSet */.− (\Sigma \dashv \Omega) \coloneqq ( S^1_{std}\wedge(-) \dashv [S^1_{std},-] ) \colon sSet^{\ast/} \longrightarrow sSet^{\ast/} \,.-
These operations extend objectwise to [sSet fin */,sSet */][sSet^{\ast/}_{fin}, sSet^{\ast/}], where we denote them by the same symbols.
Definition
Write
T:[sSet fin */,sSet */]⟶[sSet fin */,sSet */] T \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}] \longrightarrow [sSet^{\ast/}_{fin}, sSet^{\ast/}]
for the functor given on XX by
TX:K↦ΩX(ΣK). T X \colon K \mapsto \Omega X(\Sigma K) \,.
Write
τ:id⟶T \tau \;\colon\; id \longrightarrow T
for the natural transformation whose component τ X(K):X(K)→Ω(X(ΣK))\tau_{X}(K) \;\colon\; X(K) \to \Omega (X(\Sigma K)) is the (Σ⊣Ω)(\Sigma \dashv \Omega)-adjunct of the canonical morphism ΣX(K)⟶X(ΣK)\Sigma X(K) \longrightarrow X(\Sigma K) induced from
X(K ⟶ * ↓ ⇙ ↓ * ⟶ ΣK)=X(K) ⟶ * ↓ ↙ ↓ ↓ ΣX(K) ↓ ↓ ↗ ↘ τ X(K) ↓ * ⟶ X(ΣK). X \left( \array{ K & \longrightarrow & \ast \\ \downarrow &\swArrow& \downarrow \\ \ast &\longrightarrow& \Sigma K } \right) \;\;\;\; = \;\;\;\; \array{ X(K) &&\longrightarrow&& \ast \\ \downarrow &&& \swarrow & \downarrow \\ \downarrow && \Sigma X(K) && \downarrow \\ \downarrow & \nearrow && \searrow^{\mathrlap{\tau_{X}(K)}}& \downarrow \\ \ast &&\longrightarrow && X(\Sigma K) } \,.
Write
T ∞:[sSet fin */,sSet */]⟶[sSet fin */,sSet */] T^\infty \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}] \longrightarrow [sSet^{\ast/}_{fin}, sSet^{\ast/}]
for the functor given by XX by the sequential colimit
T ∞X≔lim⟶(X⟶τ XTX⟶T(τ X)T(TX)⟶≃). T^\infty X \coloneqq \underset{\longrightarrow}{\lim} \left( X \stackrel{\tau_X}{\longrightarrow} T X \stackrel{T(\tau_X)}{\longrightarrow} T (T X) \stackrel{}{\longrightarrow} \simeq \right) \,.
Write Fib:sSet *→sSet *Fib \colon sSet^{\ast} \to sSet^{\ast} for any Kan fibrant replacement functor.
Say that the stabilization (spectrification) of XX is
stab(X)≔T ∞(Fib(LanX(Fib(−)))), stab(X) \coloneqq T^\infty (Fib(Lan X(Fib(-)))) \,,
where LanX:sSet */→sSet *Lan X \colon sSet^{\ast/} \to sSet^{\ast} is the left Kan extension of XX along the inclusion sSet fin */↪sSet */sSet^{\ast/}_{fin} \hookrightarrow sSet^{\ast/}.
Definition
Say that a morphism f:X→Yf \colon X \to Y in [sSet fin */,sSet */][sSet^{\ast/}_{fin}, sSet^{\ast/}] is
-
a stable weak equivalence if its stabilization, def. , takes value on each K∈sSet */K \in sSet^{\ast/} in weak homotopy equivalences in sSet */sSet^{\ast/};
-
a stable cofibration if it has the left lifting property against those morphisms whose value on every K∈sSet */K \in sSet^{\ast/} is a Kan fibration.
(Lydakis 98, def. 9.1, def. 7.1)
Proposition
The classes of morphisms of def. , define a model category structure
[sSet fin */,sSet */] Ly. [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly} \,.
Properties
Relation to BF-model structure on sequential spectra
There is a Quillen equivalence between the Bousfield-Friedlander model structure on sequential spectra and the Lydakis model structure [sSet fin */,sSet */] Ly[sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly} from prop. .
Proposition
There is an sSet */sSet^{\ast/}-enriched functor
(−) seq:[StdSpheres,sSet */]⟶SeqPreSpec(sSet) (-)^seq \;\colon\; [StdSpheres,sSet^{\ast/}] \longrightarrow SeqPreSpec(sSet)
(from the category of sSet */sSet^{\ast/}-enriched copresheaves on the categories of standard simplicial spheres of def. to the category of sequential prespectra in sSet) given on objects by sending X∈[StdSpheres,sSet */]X \in [StdSpheres,sSet^{\ast/}] to the sequential prespectrum X seqX^{seq} with components
X n seq≔X(S std n) X^{seq}_n \coloneqq X(S^n_{std})
and with structure maps
S std 1∧X n seq⟶σ nX n seqS std 1⟶[X n seq,X n+1 seq] \frac{S^1_{std} \wedge X^{seq}_n \stackrel{\sigma_n}{\longrightarrow} X^{seq}_n}{S^1_{std} \longrightarrow [X^{seq}_n, X^{seq}_{n+1}]}
given by
S std 1⟶id˜[S std n,S std n+1]⟶X S std n,S std n+1[X n seq,X n+1 seq]. S^1_{std} \stackrel{\widetilde{id}}{\longrightarrow} [S^n_{std}, S^{n+1}_{std}] \stackrel{X_{S^n_{std}, S^{n+1}_{std}}}{\longrightarrow} [X^{seq}_n, X^{seq}_{n+1}] \,.
This is an sSet */sSet^{\ast/} enriched equivalence of categories.
Proposition
The adjunction
(ι *⊣ι *):[sSet fin */,sSet */] Ly⟶ι *⟵ι *[StdSpheres,sSet */]⟶≃(−) seqSeqPreSpec(sSet) BF (\iota_\ast \dashv \iota^\ast) \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly} \stackrel{\overset{\iota_\ast}{\longleftarrow}}{\underset{\iota^\ast}{\longrightarrow}} [StdSpheres, sSet^{\ast/}] \underoverset{\simeq}{(-)^{seq}}{\longrightarrow} SeqPreSpec(sSet)_{BF}
(given by restriction ι *\iota^\ast along the defining inclusion ι\iota of def. and by left Kan extension ι *\iota_\ast along ι\iota, and combined with the equivalence (−) seq(-)^{seq} of prop. ) is a Quillen adjunction and in fact a Quillen equivalence between the Bousfield-Friedlander model structure on sequential prespectra and Lydakis’ model structure for excisive functors, prop. .
Symmetric monoidal smash product
The excisive functors naturally carry a smash product (Lydakis 98, def. 5.1) making the model structure for 1-excisive functors a symmetric monoidal model category (Lydakis 98, section 12). Via the translation to sequential spectra of prop. this is a model for the smash product of spectra (Lydakis 98, theorem 12.5); hence it is a symmetric smash product on spectra.
A monoid with respect to this smash product (hence a ring spectrum) is equivalently a functor with smash products (“FSP”) as earlier considered in (Bökstedt 86).
Definition
Since (sSet */,∧)(sSet^{\ast/}, \wedge) (def. ) is a symmetric monoidal category, [sSet fin *,sSet */][sSet^{\ast}_{fin}, sSet^{\ast/}] canonically becomes symmetric monoidal itself via the induced Day convolution product. We write
([sSet fin */,sSet */],∧ Say) \left(\, [sSet^{\ast/}_{fin}, sSet^{\ast/}], \; \wedge_{Say} \right)
for this symmetric monoidal category.
Proof
The Day convolution product is characterized (see this proposition) by making a natural isomorphism of the form
[sSet fin */,sSet */](X∧Y,Z)≃[sSet fin */×sSet fin */,sSet */](X∧˜Y,Z∘∧) [sSet^{\ast/}_{fin}, sSet^{\ast/}](X \wedge Y, Z) \simeq [sSet^{\ast/}_{fin} \times sSet^{\ast/}_{fin}, sSet^{\ast/}](X \tilde{\wedge} Y, Z \circ \wedge)
where the external smash product ∧˜\tilde {\wedge} on the right is defined by X∧˜Y≔∧∘(X,Y)X \tilde{\wedge} Y \coloneqq \wedge \circ (X,Y) . Now, (Lydakis 98, def. 5.1) sets
X∧Y≔∧ *(X∧˜Y) X \wedge Y \coloneqq \wedge_\ast (X \tilde{\wedge} Y)
where, by (Lydakis 98, prop. 3.23), ∧ *\wedge_\ast is the left adjoint to ∧ *(−)≔(−)∘∧\wedge^\ast(-) \coloneqq (-)\circ \wedge. Hence the adjunction isomorphism gives the above characterization.
This implies that any incarnation of the sphere spectrum in [sSet fin *,sSet */][sSet^{\ast}_{fin}, sSet^{\ast/}], possibly suitably replaced acts as the tensor unit up to stable weak equivalence. The following says that the canonical incarnation of the sphere spectrum actually is the genuine (1-categorical) tensor unit:
Definition
Write
𝕊 std∈[sSet fin */,sSet */] \mathbb{S}_{std}\in [sSet^{\ast/}_{fin}, sSet^{\ast/}]
for the canonical inclusion sSet fin */↪sSet */sSet^{\ast/}_{fin} \hookrightarrow sSet^{\ast/}.
(the standard incarnation of the sphere spectrum in the model structure for excisive functors).
Proposition
The object 𝕊 std\mathbb{S}_{std} of def. is (up to isomorphism) the tensor unit in ([sSet fin */,sSet *],∧ Day)([sSet^{\ast/}_{fin}, sSet^{\ast}], \wedge_{Day}).
Proposition
Equipped with the Day convolution tensor product (prop. ) the Lydakis model category of prop. becomes a monoidal model category
([sSet fin */,sSet */] Ly,∧ Day). \left( [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}, \; \wedge_{Day} \right) \,.
This means that (commutative) monoids in the monoidal Lydakis model structure ([sSet fin */,sSet */] Ly,∧ Day) \left( [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}, \; \wedge_{Day} \right) are good models for ring spectra (E-infinity rings/A-infinity rings).
Proposition
Monoids (commutative monoids) in the Lydakis monoidal model category ([sSet fin */,sSet */] Ly,∧ Day)\left( [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}, \; \wedge_{Day} \right) of prop. are equivalently (symmetric) lax monoidal functors of the form
sSet fin */⟶sSet */ sSet^{\ast/}_{fin} \longrightarrow sSet^{\ast/}
also known as “functors with smash product” (FSPs).
with symmetric monoidal smash product of spectra
-
excisive functor, model structure on excisive functors
model structure for n-excisive functors
References
Model structure for excisive functors on simplicial sets (hence also a model structure for spectra) is discussed in:
- Manos Lydakis, Simplicial functors and stable homotopy theory Preprint, 1998 (Hopf archive pdf, pdf)
A similar model structure on functors on topological spaces was given in
- William Dwyer, Localizations, in: Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II 131, Kluwer Acad. Publ. (2004) 3-28 [doi:10.1007/978-94-007-0948-5]
and also excisive functors modeled on topological spaces are the 𝒲\mathcal{W}-spectra in
- Michael Mandell, Peter May, Stefan Schwede, Brooke Shipley, Model categories of diagram spectra, Proceedings of the London Mathematical Society 82 (2001) 441-512 [pdf]
Discussion of the restriction from excisive functors to symmetric spectra includes
- Stefan Schwede, chapter I, section 7.3 of Symmetric spectra (2012)
The functors with smash products (“FSP”s) appearing in (Lydakis 98, remark 5.12) had earlier been considered in
- Marcel Bökstedt, Topological Hochschild homology. Preprint, Bielefeld, 1986
Further generalization of the model structure for excisive functor, in particular to enriched functors and to a model structure for n-excisive functors for n≥1n \geq 1 is discussed in
-
Georg Biedermann, Boris Chorny, Oliver Röndigs, Calculus of functors and model categories, Advances in Mathematics 214 (2007) 92-115 [arXiv:math/0601221, doi:10.1016/j.aim.2006.10.009]
-
Georg Biedermann, Oliver Röndigs, Calculus of functors and model categories II, Algebr. Geom. Topol. 14 (2014) 2853-2913 [arXiv:1305.2834v2, doi:10.2140/agt.2014.14.2853]
Last revised on April 17, 2023 at 09:09:21. See the history of this page for a list of all contributions to it.