pro-object in nLab
Context
Category theory
Limits and colimits
1-Categorical
2-Categorical
(∞,1)-Categorical
Model-categorical
Contents
Idea
A pro-object of a category CC is a “formal cofiltered limit” of objects of CC.
The category of pro-objects of CC is written propro-CC. Such a category is sometimes called a pro-category, but notice that that is not the same thing as a pro-object in Cat.
“Pro” is short for “projective” (projective limit is an older term for limit). It is in contrast to “ind” in the dual notion of ind-object, standing for “inductive”, (and corresponding to inductive limit, the old term for colimit). In some (often older) sources, the term ‘projective system’ is used more or less synonymously for pro-object.
The definition of arrows in the category of pro-objects in 𝒞\mathcal{C} is perhaps more intuitive in the dual case of ind-objects (pro-objects in C opC^{op}), where it can be seen as stipulating that the objects of CC are finitely presentable in indind-CC.
Definition
As formal cofiltered limits
Let 𝒞\mathcal{C} be a small category. We write
(1)𝒞 op↪yFunc(𝒞,Sets) \mathcal{C}^{op} \xhookrightarrow{\;\;\; y \;\;\;} Func(\mathcal{C}, Sets)
for the Yoneda embedding of its opposite category, which we will often regard through its opposite functor
(2)𝒞↪y opFunc(𝒞,Sets) op. \mathcal{C} \xhookrightarrow{\;\;\; y^{op} \;\;\;} Func(\mathcal{C}, Sets)^{op} \,.
This is still a full subcategory-inclusion, now of 𝒞\mathcal{C} itself.
Definition
(category of pro-objects)
The category of pro-objects of 𝒞\mathcal{C}, according to Grothendieck 1960, Section 2, is the full subcategory of the functor category Func(𝒞,Sets) opFunc(\mathcal{C}, Sets)^{op} (2)
(3)Pro(𝒞)↪Func(𝒞,Sets) op Pro(\mathcal{C}) \xhookrightarrow{\;\;} Func(\mathcal{C}, Sets)^{op}
on those functors which are cofiltered limits of representable functors under the opposite Yoneda embedding (2), hence of the form
(4)lim⟵i∈ℐy op(X i)≔lim⟵(ℐ→X •𝒞→y opFunc(𝒞,Sets) op), \underset{\underset{i \in \mathcal{I}}{\longleftarrow}}{\lim} y^{op}(X_i) \;\; \coloneqq \;\; \underset{\longleftarrow}{\lim} \big( \mathcal{I} \xrightarrow{\;X_\bullet\;} \mathcal{C} \xrightarrow{\;y^{op}\;} Func(\mathcal{C}, Sets)^{op} \big) \,,
for ℐ\mathcal{I} a cofiltered category. These objects of Pro(𝒞)Pro(\mathcal{C}) are also called the pro-objects of 𝒞\mathcal{C}.
Remark
Under the identification of the objects of a category with those of its opposite category, the pro-objects (4) are equivalently filtered colimits of presheaves:
lim⟵i∈ℐy op(X i)≃lim⟶i∈ℐy(X i op)≔lim⟶(ℐ op→X • op𝒞 op→yFunc(𝒞,Sets)), \underset{\underset{i \in \mathcal{I}}{\longleftarrow}}{\lim} y^{op}(X_i) \;\simeq\; \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} y(X^{op}_i) \;\; \coloneqq \;\; \underset{\longrightarrow}{\lim} \big( \mathcal{I}^{op} \xrightarrow{\;X^{op}_\bullet\;} \mathcal{C}^{op} \xrightarrow{\;y\;} Func(\mathcal{C}, Sets) \big) \,,
since the limit of a functor is the colimit of its opposite functor.
Lemma
The pro-objects regarded as functors (4) are objectwise on c∈𝒞c \in \mathcal{C} given by
lim⟶i∈ℐy op(X i):c↦lim⟶i∈ℐ𝒞(X i,c). \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} y^{op}(X_i) \;\; \colon \;\; c \;\mapsto\; \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} \mathcal{C}(X_i, c) \,.
Proof
This is the composite of the following sequence of natural bijections:
(lim⟵i∈ℐy op(X i))(c) ≃(lim⟶i∈ℐy(X i op))(c) ≃lim⟶i∈ℐ((y(X i op))(c)) ≃lim⟶i∈ℐFunc(𝒞,Sets)(y(c),y(X i)) ≃lim⟶i∈ℐ𝒞 op(c,X i) ≃lim⟶i∈ℐ𝒞(X i,c), \begin{aligned} \Big( \underset{\underset{i \in \mathcal{I}}{\longleftarrow}}{\lim} y^{op}(X_i) \Big) (c) & \;\simeq\; \Big( \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} y(X^{op}_i) \Big) (c) \\ & \;\simeq\; \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} \Big( \big(y(X^{op}_i)\big) (c) \Big) \\ & \;\simeq\; \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} \; Func(\mathcal{C},Sets) \big( y(c), \, y(X_i) \big) \\ & \;\simeq\; \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} \mathcal{C}^{op}(c, X_i) \\ & \;\simeq\; \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{\lim} \mathcal{C}(X_i, c) \mathrlap{\,,} \end{aligned}
where
-
the second step uses that colimits of presheaves are computed objectwise;
-
the third step is the Yoneda lemma;
-
the fourth step is the Yoneda embedding (1);
-
the fifth step is the definition of the opposite category.
Lemma
(hom-sets between pro-objects as limits of colimits of hom-sets in 𝒞\mathcal{C})
The hom-sets in Pro(𝒞)Pro(\mathcal{C}) (Def. ) are in natural bijection with limits of colimits of hom-sets in 𝒞\mathcal{C}, as follows:
Pro(𝒞)(lim⟵i∈ℐy op(X i),lim⟵j∈𝒥y op(Y j),)≃lim⟵j∈𝒥(lim⟶i∈ℐ𝒞(X i,Y j)) Pro(\mathcal{C}) \Big( \underset{\underset{i \in \mathcal{I}}{\longleftarrow}}{lim} y^{op}(X_i), \, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} y^{op}(Y_j), \Big) \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} \Big( \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{lim} \mathcal{C} \big( X_i, \, Y_j \big) \Big)
Proof
This is the composite of the following sequence of natural bijections:
Pro(𝒞)(lim⟵i∈ℐy op(X i),lim⟵j∈𝒥y op(Y j),) ≃Func(𝒞,Sets) op(lim⟵i∈ℐy op(X i),lim⟵j∈𝒥y op(Y j),) ≃Func(𝒞,Sets)(lim⟶j∈𝒥y(Y j op),lim⟶i∈ℐy(X i op),) ≃lim⟵j∈𝒥Func(𝒞,Sets)(y(Y j op),lim⟶i∈ℐy(X i op),) ≃lim⟵j∈𝒥((lim⟶i∈ℐy(X i op))(y(Y j op))) ≃lim⟵j∈𝒥(lim⟶i∈ℐ𝒞(X i,Y j)) \begin{aligned} Pro(\mathcal{C}) \Big( \underset{\underset{i \in \mathcal{I}}{\longleftarrow}}{lim} y^{op}(X_i), \, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} y^{op}(Y_j), \Big) & \;\simeq\; Func(\mathcal{C},Sets)^{op} \Big( \underset{\underset{i \in \mathcal{I}}{\longleftarrow}}{lim} y^{op}(X_i), \, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} y^{op}(Y_j), \Big) \\ & \;\simeq\; Func(\mathcal{C},Sets) \Big( \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{lim} y(Y^{op}_j), \, \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{lim} y(X^{op}_i), \Big) \\ & \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} \; Func(\mathcal{C},Sets) \Big( y(Y^{op}_j), \, \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{lim} y(X^{op}_i), \Big) \\ & \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} \Big( \big( \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{lim} y(X^{op}_i) \big) \big( y(Y^{op}_j) \big) \Big) \\ & \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{lim} \Big( \underset{\underset{i \in \mathcal{I}}{\longrightarrow}}{lim} \mathcal{C} \big( X_i, \, Y_j \big) \Big) \end{aligned}
Here
-
the first step is the fully faithfulness of the defining full subcategory-inclusion (3);
-
the second step is the definition of the opposite category, using Remark ;
-
the third step uses that hom-functors preserve limits, which means that 𝒦 op→𝒦(−,k)Sets\mathcal{K}^{op} \xrightarrow{\;\mathcal{K}(-,k)\;} Sets takes colimits in 𝒦\mathcal{K} to limits in Sets, here for 𝒦=Func(𝒞,Sets)\mathcal{K} = Func(\mathcal{C},Sets);
-
the fourth step is the Yoneda lemma;
Via spans
Characterisations
In some cases, pro-objects in a category 𝒞\mathcal{C} can be viewed as actual limits in a certain category. We prove here some results of this kind.
Proposition
Let 𝒞\mathcal{C} be a category, and let 𝒜\mathcal{A} be a category with cofiltered limits. Suppose that we have a fully faithful functor i:𝒞→𝒜i: \mathcal{C} \rightarrow \mathcal{A} which lands in cocompact objects. Then lim 𝒜∘(i∘):Pro(𝒞)→𝒜lim_{\mathcal{A}} \circ (i \circ) : Pro(\mathcal{C}) \to \mathcal{A} is fully faithful, and hence defines an equivalence onto its image.
Proof
Let F:𝒟→𝒞F:\mathcal{D} \to \mathcal{C} and G:ℰ→𝒞G:\mathcal{E} \to \mathcal{C} be pro-objects. We then have a sequence of (natural) bijections:
Hom Pro(𝒞)(F,G)Hom_{Pro(\mathcal{C})}(F,G)
=lime:ℰcolimd:𝒟Hom 𝒞(Fd,Ge)= \underset{e:\mathcal{E}}{lim} \, \underset{d:\mathcal{D}}{colim} \, Hom_{\mathcal{C}}(F d, G e)
≅lime:ℰcolimd:𝒟Hom 𝒜(i(Fd),i(Ge))\cong \underset{e:\mathcal{E}}{lim} \, \underset{d:\mathcal{D}}{colim} \, Hom_{\mathcal{A}}(i (F d), i (G e))
≅lime:ℰHom 𝒜(limd:𝒟(i∘F)d,i(Ge))\cong \underset{e:\mathcal{E}}{lim} \, Hom_{\mathcal{A}}(\underset{d:\mathcal{D}}{lim} (i \circ F) d, i (G e))
≅Hom 𝒜(limd:𝒟(i∘F)d,lime:ℰ(i∘G)e)\cong Hom_{\mathcal{A}}(\underset{d:\mathcal{D}}{lim} (i \circ F) d, \underset{e:\mathcal{E}}{lim} (i \circ G) e)
=Hom 𝒜(lim(i∘F),lim(i∘G))= Hom_{\mathcal{A}}(lim (i \circ F), lim (i \circ G))
With these bijections being by definition of pro-object morphisms, fully faithfulness, cocompactness of i(Ge)i (G e), definition of a limit, and definition respectively.
Examples
-
Since every (dg-)coalgebra is the filtered colimit of its finite-dimensional subalgebras (see at coalgebra – as filtered colimit), the linear dual of a (dg-)coalgebra is canonically a pro-object in finite dimensional (dg-)algebras. This plays a role for instance for constructing model structures for L-infinity algebras, see there.
Applications
Etale homotopy theory.
Procategories were used by Artin and Mazur in their work on étale homotopy theory. They associated to a scheme a “pro-homotopy type”. (This is discussed briefly at étale homotopy.) The important thing to note is that this was a pro-object in the homotopy category of simplicial sets, i.e., in the pro-homotopy category. Friedlander rigidified their construction to get an object in the pro-category of simplicial sets, and this opened the door to use of ‘homotopy pro-categories’.
Shape theory.
The form of shape theory developed by Sibe Mardešić and Jack Segal, at about the same time as the work in algebraic geometry, again used an approach equivalent to that of the pro-homotopy category. Under the name “Čech homotopy theory”, the use more formally of the pro-homotopy category, was introduced by Porter. Strong shape, developed by Edwards and Hastings, also by Tim Porter and then in further work by Sibe Mardešić and Jack Segal, used various forms of rigidification to get to the pro-category of spaces, or of simplicial sets. There methods of model category theory could be used.
-
pro-object / pro-object in an (∞,1)-category
References
-
Alexander Grothendieck, Section A.2 of: FGA Technique de descente et théorèmes d’existence en géométrie algébriques. II. Le théorème d’existence en théorie formelle des modules, Séminaire Bourbaki : années 1958/59 - 1959/60, exposés 169-204, Séminaire Bourbaki, no. 5 (1960), Exposé no. 195, 22 p. (numdam:SB_1958-1960__5__369_0, English translation: web version)
-
(SGA4-1) Alexander Grothendieck, Jean-Louis Verdier, Préfaisceaux, Exp. 1 (retyped pdf) in Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics 269, Springer 1972. pdf of SGA 4, Tome 1
-
Michael Artin, Barry Mazur, appendix of Étale homotopy theory, Lecture Notes in Maths. 100, Springer-Verlag, Berlin 1969.
-
Masaki Kashiwara, and Pierre Schapira, Section 6 of: Categories and Sheaves, Grundlehren der mathematischen Wissenschaften 332 (2006)
-
Peter Johnstone, Section VI.1 of: Stone Spaces
-
Dan Isaksen, Calculating limits and colimits in pro-categories, Fund. Math. 175 (2002), no. 2, 175–194.
-
Jacob Lurie, Section 6.1 in: Ultracategories (pdf)
-
Jean-Louis Verdier, Equivalence essentielle des systèmes projectifs, C. R.A.S. Paris261 (1965), 4950 - 4953.
-
John Duskin, Pro-objects (after Verdier), Sém. Heidelberg- Strasbourg1966 -67, Exposé 6, I.R.M.A.Strasbourg.
-
A. Deleanu, P. Hilton, Borsuk shape and Grothendieck categories of pro-objects, Math. Proc. Camb. Phil. Soc.79-3 (1976), 473-482 MR400220
-
Walter Tholen, Pro-categories and multiadjoint functors, Canadian J. Math. 36:1 (1984) 144-155 doi
See also discussion in shape theory:
-
Jean-Marc Cordier, and Tim Porter, Shape Theory, categorical methods of approximation, Dover (2008) (This is a reprint of the 1989 edition without amendments.)
-
S. Mardešić, J. Segal, Shape theory, North Holland 1982
Last revised on September 6, 2024 at 09:51:00. See the history of this page for a list of all contributions to it.