rational map in nLab
Contents
Idea
Given an irreducible variety XX and a variety YY a rational map f:X⤏Yf: X\dashrightarrow Y (notice dashed arrow notation) is an equivalence class of partially defined maps, namely the pairs (U,f U)(U, f_U) where f Uf_U is a regular map f U:U→Yf_U: U\to Y defined on dense Zariski open subvarieties U⊂XU\subset X and the equivalence is the agreement on the common intersection.
The notion of an image of a rational map is nontrivially defined, see that entry. A rational map f:X⤏Yf: X\dashrightarrow Y is dominant if its image as a rational map is the whole of YY.
The composition of rational maps g∘fg\circ f where f:X⤏Yf: X\dashrightarrow Y and g:Y⤏Zg: Y\dashrightarrow Z is not always defined, namely it is even possible that the image of ff lies out of any dense open subset in YY, where gg is defined as a regular map. The composition is defined as the class of equivalence of pairs (g V∘f U|,f U −1(V))(g_V\circ f_U|, f_U^{-1}(V)) where U⊂XU\subset X and V⊂ZV\subset Z are open dense subsets and f U −1(V)≠∅f_U^{-1}(V)\neq \emptyset if such exist and undefined otherwise.
If ff is dominant then in this situation is the composition g∘fg\circ f is always defined.
References
General
Textbook account:
- Igor Shafarevich, Section 1.4 of: Basic Algebraic Geometry 1 – Varieties in Projective Space, Springer 1977, 1994, 2013 (pdf, doi:10.1007/978-3-642-57908-0)
Review:
- János Kollár, Section 3 of: Algebraic hypersurfaces, Bull. Amer. Math. Soc. 56 (2019), 543-568 (arXiv:1810.02861, doi:10.1090/bull/1663)
Lecture notes:
- Daniel Plaumann, Rational Functions and Maps (pdf, pdf), Lecture 5 in Classical algebraic geometry 2015
See also:
- Wikipedia, Rational mapping
Exposition for the case of maps from the Riemann sphere to a complex projective space:
- Sheldon Katz, Sections 2,3 of: Enumerative Geometry and String Theory, Student Mathematical Library 32 (2006) (ISBN:978-1-4704-2143-4, spire:739788)
Identification of Yang-Mills monopoles with rational maps
The following lists references concerned with the identification of the (extended) moduli space of Yang-Mills monopoles (in the BPS limit, i.e. for vanishing Higgs potential) with a mapping space of complex rational maps from the complex plane, equivalently holomorphic maps from the Riemann sphere ℂP 1\mathbb{C}P^1 (at infinity in ℝ 3\mathbb{R}^3) to itself (for gauge group SU(2)) or generally to a complex flag variety such as (see Ionnadou & Sutcliffe 1999a for review) to a coset space by the maximal torus (for maximal symmetry breaking) or to complex projective space ℂP n−1\mathbb{C}P^{n-1} (for gauge group SU(n) and minimal symmetry breaking).
The identification was conjectured (following an analogous result for Yang-Mills instantons) in:
- Michael Atiyah, Section 5 of: Instantons in two and four dimensions, Commun. Math. Phys. 93, 437–451 (1984) (doi:10.1007/BF01212288)
Full understanding of the rational map involved as “scattering data” of the monopole is due to:
- Jacques Hurtubise, Monopoles and rational maps: a note on a theorem of Donaldson, Comm. Math. Phys. 100(2): 191-196 (1985) (euclid:cmp/1103943443)
The identification with (pointed) holomorphic functions out of ℂ P 1 \mathbb{C}P^1 was proven…
…for the case of gauge group SU ( 2 ) SU(2) (maps to ℂ P 1 \mathbb{C}P^1 itself) in
- Simon Donaldson, Nahm’s Equations and the Classification of Monopoles, Comm. Math. Phys., Volume 96, Number 3 (1984), 387-407, (euclid:cmp.1103941858)
…for the more general case of classical gauge group with maximal symmetry breaking (maps to the coset space by the maximal torus) in:
-
Jacques Hurtubise, The classification of monopoles for the classical groups, Commun. Math. Phys. 120, 613–641 (1989) (doi:10.1007/BF01260389)
-
Jacques Hurtubise, Michael K. Murray, On the construction of monopoles for the classical groups, Comm. Math. Phys. 122(1): 35-89 (1989) (euclid:cmp/1104178316)
-
Michael Murray, Stratifying monopoles and rational maps, Commun. Math. Phys. 125, 661–674 (1989) (doi:10.1007/BF01228347)
-
Jacques Hurtubise, Michael K. Murray, Monopoles and their spectral data, Comm. Math. Phys. 133(3): 487-508 (1990) (euclid:cmp/1104201504)
… for the fully general case of semisimple gauge groups with any symmetry breaking (maps to any flag varieties) in
-
Stuart Jarvis, Euclidian Monopoles and Rational Maps, Proceedings of the London Mathematical Society 77 1 (1998) 170-192 (doi:10.1112/S0024611598000434)
-
Stuart Jarvis, Construction of Euclidian Monopoles, Proceedings of the London Mathematical Society, 77 1 (1998) (doi:10.1112/S0024611598000446)
and for un-pointed maps in
- Stuart Jarvis, A rational map of Euclidean monopoles via radial scattering, J. Reine angew. Math. 524 (2000) 17-41(doi:10.1515/crll.2000.055)
Further discussion:
-
Charles P. Boyer, B. M. Mann, Monopoles, non-linear σ\sigma-models, and two-fold loop spaces, Commun. Math. Phys. 115, 571–594 (1988) (arXiv:10.1007/BF01224128)
-
Theodora Ioannidou, Paul Sutcliffe, Monopoles and Harmonic Maps, J. Math. Phys. 40:5440-5455 (1999) (arXiv:hep-th/9903183)
-
Theodora Ioannidou, Paul Sutcliffe, Monopoles from Rational Maps, Phys. Lett. B457 (1999) 133-138 (arXiv:hep-th/9905066)
-
Max Schult, Nahm’s Equations and Rational Maps from ℂP 1\mathbb{C}P^1 to ℂP n\mathbb{C}P^n [arXiv:2310.18058]
-
L. A. Ferreira, L. R. Livramento: Harmonic, Holomorphic and Rational Maps from Self-Duality [arXiv:2412.02636]
Review:
- Alexander B. Atanasov, Magnetic monopoles and the equations of Bogomolny and Nahm (pdf), chapter 5 in: Magnetic Monopoles, ‘t Hooft Lines, and the Geometric Langlands Correspondence, 2018 (pdf, slides)
On the relevant homotopy of rational maps (see there for more references):
- Graeme Segal, The topology of spaces of rational functions, Acta Math. Volume 143 (1979), 39-72 (euclid:1485890033)
Skyrmions from rational maps
The following is a list of references on the construction of Skyrmion-solutions of the Yang-Mills field via rational maps from the complex plane, hence holomorphic maps from the Riemann sphere, to itself, akin to the Donaldson-construction of Yang-Mills monopoles.
The original idea:
- Conor J. Houghton, Nicholas Manton, Paul Sutcliffe, Rational Maps, Monopoles and Skyrmions, Nucl. Phys. B510 (1998) 507-537 (arXiv:hep-th/9705151, doi:10.1016/S0550-3213(97)00619-6)
Further discussion:
-
Steffen Krusch, S 3S^3 Skyrmions and the Rational Map Ansatz, Nonlinearity 13:2163, 2000 (arXiv:hep-th/0006147)
-
Nicholas S. Manton, Bernard M.A.G. Piette, Understanding Skyrmions using Rational Maps, in: Casacuberta C., Miró-Roig R.M., Verdera J., Xambó-Descamps S. (eds.) European Congress of Mathematics. Progress in Mathematics, vol 201. Birkhäuser, Basel. 2001 (doi:10.1007/978-3-0348-8268-2_27, arXiv:hep-th/0008110)
-
Richard Battye, Paul Sutcliffe, Skyrmions, Fullerenes and Rational Maps, Rev. Math. Phys. 14 (2002) 29-86 (arXiv:hep-th/0103026)
-
W.T. Lin, Bernard M.A.G. Piette, Skyrmion Vibration Modes within the Rational Map Ansatz, Phys. Rev. D77:125028, 2008 (arXiv:0804.4786, doi:10.1103/PhysRevD.77.125028)
On quantization of Skyrmions informed by homotopy of rational maps:
-
Steffen Krusch, Homotopy of rational maps and the quantization of Skyrmions, Annals of Physics Volume 304, Issue 2, April 2003, Pages 103-127 (doi:10.1016/S0003-4916(03)00014-9, arXiv:hep-th/0210310)
-
Steffen Krusch, Skyrmions and Rational Maps, talk at KIAS 2004 (pdf, pdf)
-
Steffen Krusch, Quantization of Skyrmions (arXiv:hep-th/0610176)
the impact of which, on the computation of atomic nuclei, is highlighted in:
- Richard A. Battye, Nicholas Manton, Paul Sutcliffe, p. 23 of: Skyrmions and Nuclei, pp. 3-39 (2010) (doi:10.1142/9789814280709_0001) in: Mannque Rho, Ismail Zahed (eds.) The Multifaceted Skyrmion, World Scientific 2016 (doi:10.1142/9710)
See also:
- Derek Harland, Paul Sutcliffe, Rational Skyrmions [[arXiv:2307.09355]]
Last revised on July 6, 2023 at 10:07:59. See the history of this page for a list of all contributions to it.