wave vector in nLab
Context
Harmonic analysis
Contents
Idea
A wave vector is a vector that encodes wavelength and direction of a plane wave.
Definition
Let n∈ℕn \in \mathbb{N} and write ℝ n\mathbb{R}^n the Cartesian space of dimension nn. Thinking of ℝ n\mathbb{R}^n as a vector space, then each point in it is a vector x→∈ℝ n\vec x \in \mathbb{R}^n and hence a smooth function f:ℝ n→ℂf \colon \mathbb{R}^n \to \mathbb{C} may be thought of as a function of these “position vectors”.
If ff is a function with rapidly decreasing partial derivatives, then its Fourier transform f^:ℝ n→ℂ\hat f \;\colon\; \mathbb{R}^n \to \mathbb{C} exists. By the Fourier inversion theorem, this function is such that it expresses ff as a superposition of “plane wave” functions x→↦e 2πix→⋅k→\vec x \mapsto e^{2\pi i \vec x \cdot \vec k} as
f(x→)=∫k→∈ℝ nf^(k)e 2πik→⋅x→dk→. f(\vec x) \;=\; \underset{\vec k \in \mathbb{R}^n}{\int} \hat f(k) \, e^{2 \pi i \vec k \cdot \vec x} \, d \vec k \,.
Here the vector k→∈ℝ n\vec k \in \mathbb{R}^n determines
-
the wavelength λ≔1/|k→|\lambda \coloneqq 1/{\vert \vec k\vert} (the inverse of the norm of k→\vec k);
-
the direction k→|k→|∈S(ℝ n)\frac{\vec k}{{\vert \vec k\vert }} \in S(\mathbb{R}^n) (the corresponding unit vector in the unit sphere)
of the “plane wave” x→↦e 2πix→⋅k→\vec x \mapsto e^{2 \pi i \vec x \cdot \vec k}.
The product 2π|k|2 \pi {\vert k \vert} is also called the wave number and 2πk2 \pi k then the wave number vector. Beware that elsewhere the wave number vector is denoted “kk”, which makes the “wave vector” become k/2πk / 2 \pi. (See e.g. Wikipedia, “Physics definition” as opposed to “Crystallography definition”.)
If here ℝ n≃ℝ p,1\mathbb{R}^n \simeq \mathbb{R}^{p,1} is identified with Minkowski spacetime with canonical coordinates denoted (x 0,x 1,⋯,x p)(x^0, x^1, \cdots, x^p), then the 0-component of the wave vector
ν≔k 0 \nu \coloneqq k_0
is called the frequency of the corresponding plane wave (in the chosen coordinate system); this ω=2πvu\omega = 2 \pi \vu is the angular frequency.
plane waves on Minkowski spacetime
ℝ p,1 ⟶ψ k ℂ x ↦ exp(ik μx μ) (x→,x 0) ↦ exp(ik→⋅x→+ik 0x 0) (x→,ct) ↦ exp(ik→⋅x→−iωt) \array{ \mathbb{R}^{p,1} &\overset{\psi_k}{\longrightarrow}& \mathbb{C} \\ x &\mapsto& \exp\left( \, i k_\mu x^\mu \, \right) \\ (\vec x, x^0) &\mapsto& \exp\left( \, i \vec k \cdot \vec x + i k_0 x^0 \, \right) \\ (\vec x, c t) &\mapsto& \exp\left( \, i \vec k \cdot \vec x - i \omega t \, \right) }
symbol | name |
---|---|
cc | speed of light |
ℏ\hbar | Planck's constant |
\, | \, |
mm | mass |
ℏmc\frac{\hbar}{m c} | Compton wavelength |
\, | \, |
kk, k→\vec k | wave vector |
λ=2π/|k→|\lambda = 2\pi/{\vert \vec k \vert} | wave length |
|k→|=2π/λ{\vert \vec k \vert} = 2\pi/\lambda | wave number |
ω≔k 0c=−k 0c=2πν\omega \coloneqq k^0 c = -k_0 c = 2\pi \nu | angular frequency |
ν=ω/2π\nu = \omega / 2 \pi | frequency |
p=ℏkp = \hbar k, p→=ℏk→\vec p = \hbar \vec k | momentum |
E=ℏωE = \hbar \omega | energy |
ω(k→)=ck→ 2+(mcℏ) 2\omega(\vec k) = c \sqrt{ \vec k^2 + \left(\frac{m c}{\hbar}\right)^2 } | Klein-Gordon dispersion relation |
E(p→)=c 2p→ 2+(mc 2) 2E(\vec p) = \sqrt{ c^2 \vec p^2 + (m c^2)^2 } | energy-momentum relation |
References
See also
- Wikipedia, Wave vector
Last revised on August 2, 2018 at 07:11:17. See the history of this page for a list of all contributions to it.